Fundamentals of Finslerian Diffusion with Applications
Home > Mathematics and Science Textbooks > Biology, life sciences > Fundamentals of Finslerian Diffusion with Applications
Fundamentals of Finslerian Diffusion with Applications

Fundamentals of Finslerian Diffusion with Applications

|
     0     
5
4
3
2
1




International Edition


About the Book

The erratic motion of pollen grains and other tiny particles suspended in liquid is known as Brownian motion, after its discoverer, Robert Brown, a botanist who worked in 1828, in London. He turned over the problem of why this motion occurred to physicists who were investigating kinetic theory and thermodynamics; at a time when the existence of molecules had yet to be established. In 1900, Henri Poincare lectured on this topic to the 1900 International Congress of Physicists, in Paris [Wic95]. At this time, Louis Bachelier, a thesis student of Poincare, made a monumental breakthrough with his Theory of Stock Market Fluctuations, which is still studied today, [Co064]. Norbert Wiener (1923), who was first to formulate a rigorous concept of the Brownian path, is most often cited by mathematicians as the father of the subject, while physicists will cite A. Einstein (1905) and M. Smoluchowski. Both considered Markov diffusions and realized that Brownian behaviour nd could be formulated in terms of parabolic 2 order linear p. d. e. 'so Further­ more, from this perspective, the covariance of changes in position could be allowed to depend on the position itself, according to the invariant form of the diffusion introduced by Kolmogorov in 1937, [KoI37]. Thus, any time­ homogeneous Markov diffusion could be written in terms of the Laplacian, intrinsically given by the symbol (covariance) of the p. d. e. , plus a drift vec­ tor. The theory was further advanced in 1949, when K.

Table of Contents:
1 Finsler Spaces.- 1.1 The Tangent and Cotangent Bundle.- 1.2 Fiber Bundles.- 1.3 Frame Bundles and Linear Connections.- 1.4 Tensor Fields.- 1.5 Linear Connections.- 1.6 Torsion and Curvature of a Linear Connection.- 1.7 Parallelism.- 1.8 The Levi-Cività Connection on a Riemannian Manifold.- 1.9 Geodesics, Stability and the Orthonormal Frame Bundle.- 1.10 Finsler Space and Metric.- 1.11 Finsler Tensor Fields.- 1.12 Nonlinear Connections.- 1.13 Affine Connections on the Finsler Bundle.- 1.14 Finsler Connections.- 1.15 Torsions and Curvatures of a Finsler Connection.- 1.16 Metrical Finsler Connections. The Cartan Connection.- 2 Introduction to Stochastic Calculus on Manifolds.- 2.1 Preliminaries.- 2.2 Itô’s Stochastic Integral.- 2.3 Ito Processes. Itô Formula.- 2.4 Stratonovich Integrals.- 2.5 Stochastic Differential Equations on Manifolds.- 3 Stochastic Development on Finsler Spaces.- 3.1 Riemannian Stochastic Development.- 3.2 Rolling Finsler Manifolds Along Smooth Curves and Diffusions.- 3.3 Finslerian Stochastic Development.- 3.4 Radial Behaviour.- 4 Volterra-Hamilton Systems of Finsler.- 4.1 Berwald Connections and Berwald Spaces.- 4.2 Volterra-Hamilton Systems and Ecology.- 4.3 Wagnerian Geometry and Volterra-Hamilton Systems.- 4.4 Random Perturbations of Finslerian Volterra-Hamilton Systems.- 4.5 Random Perturbations of Riemannian Volterra-Hamilton Systems.- 4.6 Noise in Conformally Minkowski Systems.- 4.7 Canalization of Growth and Development with Noise.- 4.8 Noisy Systems in Chemical Ecology and Epidemiology.- 4.9 Riemannian Nonlinear Filtering.- 4.10 Conformai Signals and Geometry of Filters.- 4.11 Riemannian Filtering of Starfish Predation.- 5 Finslerian Diffusion and Curvature.- 5.1 Cartan’s Lemma in Berwald Spaces.- 5.2 Quadratic Dispersion.- 5.3Finslerian Development and Curvature.- 5.4 Finsleriam Filtering and Quadratic Dispersion.- 5.5 Entropy Production and Quadratic Dispersion.- 6 Diffusion on the Tangent and Indicatrix Bundles.- 6.1 Slit Tangent Bundle as Riemannian Manifold.- 6.2 hv-Development as Riemannian Development with Drift.- 6.3 Indicatrized Finslerian Stochastic Development.- 6.4 Indicatrized hv-Development Viewed as Riemannian.- A Diffusion and Laplacian on the Base Space.- A.1 Finslerian Isotropic Transport Process.- A.2 Central Limit Theorem.- A.3 Laplacian, Harmonic Forms and Hodge Decomposition.- B Two-Dimensional Constant Berwald Spaces.- B.1 Berwald’s Famous Theorem.- B.2 Standard Coordinate Representation.


Best Sellers


Product Details
  • ISBN-13: 9780792355113
  • Publisher: Springer
  • Publisher Imprint: Springer
  • Height: 235 mm
  • No of Pages: 205
  • Returnable: Y
  • ISBN-10: 0792355113
  • Publisher Date: 31 Dec 1998
  • Binding: Hardback
  • Language: English
  • Returnable: Y
  • Width: 155 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Fundamentals of Finslerian Diffusion with Applications
Springer -
Fundamentals of Finslerian Diffusion with Applications
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Fundamentals of Finslerian Diffusion with Applications

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!