The Best Approximation Method in Computational Mechanics
Home > Mathematics and Science Textbooks > Mathematics > Calculus and mathematical analysis > Functional analysis and transforms > The Best Approximation Method in Computational Mechanics
The Best Approximation Method in Computational Mechanics

The Best Approximation Method in Computational Mechanics

|
     0     
5
4
3
2
1




Out of Stock


Notify me when this book is in stock
About the Book

With the overwhelming use of computers in engineering, science and physics, the approximate solution of complex mathematical systems of equations is almost commonplace. The Best Approximation Method unifies many of the numerical methods used in computational mechanics. Nevertheless, despite the vast quantities of synthetic data there is still some doubt concerning the validity and accuracy of these approximations. This publication assists the computer modeller in his search for the best approximation by presenting functional analysis concepts. Computer programs are provided which can be used by readers with FORTRAN capability. The classes of problems examined include engineering applications, applied mathematics, numerical analysis and computational mechanics. The Best Approximation Method in Computational Mechanics serves as an introduction to functional analysis and mathematical analysis of computer modelling algorithms. It makes computer modellers aware of already established principles and results assembled in functional analysis.

Table of Contents:
1 Topics in Functional Analysis.- 1.0 Introduction.- 1.1 Set Theory.- 1.2 Functions.- 1.3 Matrices.- 1.4 Solving Matrix Systems.- 1.5 Metric Spaces.- 1.6 Linear Spaces.- 1.7 Normed Linear Spaces.- 1.8 Approximations.- 2 Integration Theory.- 2.0 Introduction.- 2.1 Reimann and Lebesgue Integrals: Step and Simple Functions.- 2.2 Lebesgue Measure.- 2.3 Measurable Functions.- 2.4 The Lebesgue Integral.- 2.4.1 Bounded Functions.- 2.4.2 Unbounded Functions.- 2.5 Key Theorems in Integration Theory.- 2.6 Lp Spaces.- 2.6.1 m-Equivalent Functions.- 2.6.2 The Space Lp.- 2.7 The Metric Space, Lp.- 2.8 Convergence of Sequences.- 2.8.1 Common Modes of Convergence.- 2.8.2 Convergence in Lp.- 2.8.3 Convergence in Measure (M).- 2.8.4 Almost Uniform Convergence (AU).- 2.8.5 Is the Approximation Converging?.- 2.8.6 Counterexamples.- 2.9 Capsulation.- 3 Hilbert Space and Generalized Fourier Series.- 3.0 Introduction.- 3.1 Inner Product and Hilbert Space.- 3.2 Best Approximations in an Inner Product Space.- 3.3 Approximations in L2(E).- 3.3.1 Parseval's Identity.- 3.3.2 Bessel's Inequality.- 3.4 Vector Representations and Best Approximations.- 3.5 Computer Program.- 4 Linear Operators.- 4.0 Introduction.- 4.1 Linear Operator Theory.- 4.2 Operator Norms.- 4.3 Examples of Linear Operators in Engineering.- 4.4 Superposition.- 5 The Best Approximation Method.- 5.0 Introduction.- 5.1 An Inner Product for the Solution of Linear Operator Equations.- 5.2 Definition of Inner Product and Norm.- 5.3 Generalized Fourier Series.- 5.4 Approximation Error Evaluation.- 5.5 The Weighted Inner Product.- 5.6 Considerations in Choosing Basis Functions.- 5.6.1 Global Basis Elements.- 5.6.2 Spline Basis Functions.- 5.6.3 Mixed Basis Functions.- 6 The Best Approximation Method: Applications.- 6.0 Introduction.- 6.1 Sensitivity of Computational Results to Variation in the Inner Product Weighting Factor.- 6.2 Solving Two-Dimensional Potential Problems.- 6.3 Application to Other Linear Operators.- 6.4 Computer Program: Two-Dimensional Potential Problems Using Real Variable Basis Functions.- 6.4.1 Introduction.- 6.4.2 Input Data Description.- 6.4.3 Computer Program Listing.- 6.5 Application of Computer Program.- 6.5.1 A Fourth Order Differential Equation.- 7 Solving Potential Problems using the Best Approximation Method.- 7.0 Introduction.- 7.1 The Complex Variable Boundary Element Method.- 7.1.1 Objectives.- 7.1.2 Definition 7.1.1 (Working Space, W?).- 7.1.3 Definition 7.1.2 (the Function ??? to ???2).- 7.1.4 Almost Everywhere (ae) Equality.- 7.1.5 Theorem (relationship of ??? to ???2).- 7.1.6 Theorem.- 7.1.7 Theorem.- 7.2 Mathematical Development.- 7.2.1 Discussion: (A Note on Hardy Spaces).- 7.2.2 Theorem (Boundary Integral Representation).- 7.2.3 Almost Everywhere (ae) Equivalence.- 7.2.4 Theorem (Uniqueness of Zero Element in W?).- 7.2.5 Theorem (W? is a Vector Space).- 7.2.6 Theorem (Definition of the Inner-Product).- 7.2.7 Theorem (W? is an Inner-Product Space).- 7.2.8 Theorem (??? is a Norm on W?).- 7.2.9 Theorem.- 7.3 The CVBEM and W?.- 7.3.1 Definition 7.3.1 (Angle Points).- 7.3.2 Definition 7.3.2 (Boundary Element).- 7.3.3 Theorem.- 7.3.4 Definition 7.3.3 (Linear Basis Function).- 7.3.5 Theorem.- 7.3.6 Definition 7.3.4 (Global Trial Function).- 7.3.7 Theorem.- 7.3.8 Discussion.- 7.3.9 Theorem.- 7.3.10 Discussion.- 7.3.11 Theorem (Linear Independence of Nodal Expansion Functions).- 7.3.12 Discussion.- 7.3.13 Theorem.- 7.3.14 Theorem.- 7.3.15 Discussion.- 7.4 The Space W?A.- 7.4.1 Definition 7.4.1 (W?A).- 7.4.2 Theorem.- 7.4.3 Theorem.- 7.4.4 Discussion.- 7.4.5 Theorem.- 7.4.6 Theorem.- 7.4.7 Discussion: Another Look at W?.- 7.5 Applications.- 7.5.1 Introduction.- 7.5.2 Nodal Point Placement on ?.- 7.5.3 Potential Flow-Field (Flow-Net) Development.- 7.5.4 Approximate Boundary Development.- 7.5.5 Application Problems.- 7.6 Computer Program: Two-Dimensional Potential Problems using Analytic Basis Functions (CVBEM).- 7.6.1 Introduction.- 7.6.2 CVBEM1 Program Listing.- 7.6.3 Input Variable Description for CVBEM1.- 7.6.4 CVBEM2 Program Listing.- 7.7 Modelling Groundwater Contaminant Transport.- 7.7.1 Application 1A.- 7.7.2 Application 1B.- 7.7.3 Application 2A.- 7.7.4 Application 2B.- 7.8 Three Dimensional Potential Problems.- 7.8.1 Approximation Error Evaluation - Approximate Boundary Method.- 7.8.2 Computer Implementation.- 7.8.3 Application.- 7.8.4 Trial Functions.- 7.8.5 Constructing the Approximate Boundary, ?.- 8 Applications to Linear Operator Equations.- 8.0 Introduction.- 8.1 Data Fit Analysis.- 8.2 Ordinary Differential Equations.- 8.3 Best Approximation of Function.- 8.4 Matrix Systems.- 8.5 Linear Partial Differential Equations.- 8.6 Linear Integral Equations.- 8.6.1 An Inverse Problem.- 8.6.2 Best Approximation of the Transfer Function in a Linear Space.- References.- Appendix A Derivation of CVBEM Approximation Function.- Appendix B Convergence of CVBEM Approximator.- Appendix C The Approximate Boundary for Error Analysis.


Best Sellers


Product Details
  • ISBN-13: 9783540197980
  • Publisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
  • Publisher Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Height: 235 mm
  • Returnable: N
  • Width: 155 mm
  • ISBN-10: 3540197982
  • Publisher Date: 30 Nov 1992
  • Binding: Hardback
  • Language: English
  • Weight: 530 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
The Best Approximation Method in Computational Mechanics
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG -
The Best Approximation Method in Computational Mechanics
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

The Best Approximation Method in Computational Mechanics

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!