Energy Minimization Methods in Computer Vision and Pattern Recognition
Home > Computing and Information Technology > Computer science > Artificial intelligence > Computer vision > Energy Minimization Methods in Computer Vision and Pattern Recognition: 4th International Workshop, EMMCVPR 2003, Lisbon, Portugal, July 7-9, 2003, Proceedings
Energy Minimization Methods in Computer Vision and Pattern Recognition: 4th International Workshop, EMMCVPR 2003, Lisbon, Portugal, July 7-9, 2003, Proceedings

Energy Minimization Methods in Computer Vision and Pattern Recognition: 4th International Workshop, EMMCVPR 2003, Lisbon, Portugal, July 7-9, 2003, Proceedings

|
     0     
5
4
3
2
1




International Edition


About the Book

This volume consists of the 33 papers presented at the International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2003)which was held at Instituto Superior T' ecnico (IST), the - gineeringSchooloftheTechnicalUniversityofLisbon,PortugalduringJuly7-9, 2003.Thisworkshopwasthefourthinthe serieswhichstartedwithEMMCVPR 1997 held in Venice, Italy in May 1997 and continued with EMMCVPR 1999 held in York, UK in July 1999 and EMMCVPR 2001 held in Sophia-Antipolis, France in September 2001. Many problems in computer vision and pattern recognition (CVPR) are couchedintheframeworkofoptimization.Theminimizationofaglobalquantity, often referred to as the energy, forms the bulwark of most approachesin CVPR. Disparate approaches,such as discrete and probabilistic formulations on the one hand and continuous, deterministic strategies on the other, often have optimi- tion or energy minimization as a common theme. Instances of energy minimi- tion arise in Gibbs/Markov modeling, Bayesian decision theory, geometric and variational approaches and in areas in CVPR such as object recognition and - trieval, image segmentation, registration, reconstruction, classi?cation and data mining. The aim of the EMMCVPR workshops is to bring together researchers with interests in these disparate areas of CVPR but with an underlying commitment to some form of energy minimization. Although the subject is traditionally well representedinmajorinternationalconferencesonCVPR,thisworkshopprovides a forum wherein researchers can report their recent work and engage in more informal discussions.

Table of Contents:
Unsupervised Learning and Matching.- Stochastic Search for Optimal Linear Representations of Images on Spaces with Orthogonality Constraints.- Local PCA for Strip Line Detection and Thinning.- Curve Matching Using the Fast Marching Method.- EM Algorithm for Clustering an Ensemble of Graphs with Comb Matching.- Information Force Clustering Using Directed Trees.- Watershed-Based Unsupervised Clustering.- Probabilistic Modelling.- Active Sampling Strategies for Multihypothesis Testing.- Likelihood Based Hierarchical Clustering and Network Topology Identification.- Learning Mixtures of Tree-Unions by Minimizing Description Length.- Image Registration and Segmentation by Maximizing the Jensen-Rényi Divergence.- Asymptotic Characterization of Log-Likelihood Maximization Based Algorithms and Applications.- Maximum Entropy Models for Skin Detection.- Hierarchical Annealing for Random Image Synthesis.- On Solutions to Multivariate Maximum ?-Entropy Problems.- Segmentation and Grouping.- Semi-supervised Image Segmentation by Parametric Distributional Clustering.- Path Variation and Image Segmentation.- A Fast Snake Segmentation Method Applied to Histopathological Sections.- A Compositionality Architecture for Perceptual Feature Grouping.- Using Prior Shape and Points in Medical Image Segmentation.- Separating a Texture from an Arbitrary Background Using Pairwise Grey Level Cooccurrences.- Shape Modelling.- Surface Recovery from 3D Point Data Using a Combined Parametric and Geometric Flow Approach.- Geometric Analysis of Continuous, Planar Shapes.- Curvature Vector Flow to Assure Convergent Deformable Models for Shape Modelling.- Definition of a Signal-to-Noise Ratio for Object Segmentation Using Polygonal MDL-Based Statistical Snakes.- Restoration and Reconstruction.-Minimization of Cost-Functions with Non-smooth Data-Fidelity Terms to Clean Impulsive Noise.- A Fast GEM Algorithm for Bayesian Wavelet-Based Image Restoration Using a Class of Heavy-Tailed Priors.- Diffusion Tensor MR Image Restoration.- A MAP Estimation Algorithm Using IIR Recursive Filters.- Estimation of Rank Deficient Matrices from Partial Observations: Two-Step Iterative Algorithms.- Contextual and Non-combinatorial Approach to Feature Extraction.- Graphs and Graph-Based Methods.- Generalizing the Motzkin-Straus Theorem to Edge-Weighted Graphs, with Applications to Image Segmentation.- Generalized Multi-camera Scene Reconstruction Using Graph Cuts.- Graph Matching Using Spectral Seriation.


Best Sellers


Product Details
  • ISBN-13: 9783540404989
  • Publisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
  • Publisher Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Height: 235 mm
  • No of Pages: 534
  • Returnable: Y
  • Width: 155 mm
  • ISBN-10: 3540404988
  • Publisher Date: 26 Jun 2003
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Sub Title: 4th International Workshop, EMMCVPR 2003, Lisbon, Portugal, July 7-9, 2003, Proceedings


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Energy Minimization Methods in Computer Vision and Pattern Recognition: 4th International Workshop, EMMCVPR 2003, Lisbon, Portugal, July 7-9, 2003, Proceedings
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG -
Energy Minimization Methods in Computer Vision and Pattern Recognition: 4th International Workshop, EMMCVPR 2003, Lisbon, Portugal, July 7-9, 2003, Proceedings
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Energy Minimization Methods in Computer Vision and Pattern Recognition: 4th International Workshop, EMMCVPR 2003, Lisbon, Portugal, July 7-9, 2003, Proceedings

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!