Deep Learning and Convolutional Neural Networks for Medical Image Computing
Home > Computing and Information Technology > Computer science > Artificial intelligence > Neural networks and fuzzy systems > Deep Learning and Convolutional Neural Networks for Medical Image Computing: Precision Medicine, High Performance and Large-Scale Datasets
Deep Learning and Convolutional Neural Networks for Medical Image Computing: Precision Medicine, High Performance and Large-Scale Datasets

Deep Learning and Convolutional Neural Networks for Medical Image Computing: Precision Medicine, High Performance and Large-Scale Datasets

|
     0     
5
4
3
2
1




Out of Stock


Notify me when this book is in stock
About the Book

This book presents a detailed review of the state of the art in deep learning approaches for semantic object detection and segmentation in medical image computing, and large-scale radiology database mining. A particular focus is placed on the application of convolutional neural networks, with the theory supported by practical examples. Features: highlights how the use of deep neural networks can address new questions and protocols, as well as improve upon existing challenges in medical image computing; discusses the insightful research experience of Dr. Ronald M. Summers; presents a comprehensive review of the latest research and literature; describes a range of different methods that make use of deep learning for object or landmark detection tasks in 2D and 3D medical imaging; examines a varied selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to interleaved text and image deep mining on a large-scale radiology image database.

Table of Contents:
Part I: Review.- Chapter 1. Deep Learning and Computer-Aided Diagnosis for Medical Image Processing: A Personal Perspective.- Chapter 2. Review of Deep Learning Methods in Mammography, Cardiovascular and Microscopy Image Analysis.- Part II: Detection and Localization.- Chapter 3. Efficient False-Positive Reduction in Computer-Aided Detection Using Convolutional Neural Networks and Random View Aggregation.- Chapter 4. Robust Landmark Detection in Volumetric Data with Efficient 3D Deep Learning.- Chapter 5. A Novel Cell Detection Method Using Deep Convolutional Neural Network and Maximum-Weight Independent Set.- Chapter 6. Deep Learning for Histopathological Image Analysis: Towards Computerized Diagnosis on Cancers.- Chapter 7. Interstitial Lung Diseases via Deep Convolutional Neural Networks: Segmentation Label Propagation, Unordered Pooling and Cross-Dataset Learning.- Chapter 8. Three Aspects on Using Convolutional Neural Networks for Computer-Aided Detection in Medical Imaging.- Chapter 9. Cell Detection with Deep Learning Accelerated by Sparse Kernel.- Chapter 10. Fully Convolutional Networks in Medical Imaging: Applications to Image Enhancement and Recognition.- Chapter 11. On the Necessity of Fine-Tuned Convolutional Neural Networks for Medical Imaging.- Part III: Segmentation.- Chapter 12. Fully Automated Segmentation Using Distance Regularized Level Set and Deep-Structured Learning and Inference.- Chapter 13. Combining Deep Learning and Structured Prediction for Segmenting Masses in Mammograms.- Chapter 14. Deep Learning Based Automatic Segmentation of Pathological Kidney in CT: Local vs. Global Image Context.- Chapter 15. Robust Cell Detection and Segmentation in Histopathological Images using Sparse Reconstruction and Stacked Denoising Autoencoders.- Chapter 16. Automatic Pancreas Segmentation Using Coarse-to-Fine Superpixel Labeling.- Part IV: Big Dataset and Text-Image Deep Mining.- Chapter 17. Interleaved Text/Image Deep Mining on a Large-Scale RadiologyImage Database.


Best Sellers


Product Details
  • ISBN-13: 9783319429984
  • Publisher: Springer International Publishing AG
  • Binding: Hardback
  • Language: English
  • Returnable: Y
  • Width: 155 mm
  • ISBN-10: 3319429981
  • Publisher Date: 24 Jul 2017
  • Height: 235 mm
  • No of Pages: 326
  • Sub Title: Precision Medicine, High Performance and Large-Scale Datasets


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Deep Learning and Convolutional Neural Networks for Medical Image Computing: Precision Medicine, High Performance and Large-Scale Datasets
Springer International Publishing AG -
Deep Learning and Convolutional Neural Networks for Medical Image Computing: Precision Medicine, High Performance and Large-Scale Datasets
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Deep Learning and Convolutional Neural Networks for Medical Image Computing: Precision Medicine, High Performance and Large-Scale Datasets

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!