Computational Lithography
Home > Science, Technology & Agriculture > Electronics and communications engineering > Electronics engineering > Electronics: circuits and components > Computational Lithography
Computational Lithography

Computational Lithography

|
     0     
5
4
3
2
1




International Edition


About the Book

A Unified Summary of the Models and Optimization Methods Used in Computational Lithography Optical lithography is one of the most challenging areas of current integrated circuit manufacturing technology. The semiconductor industry is relying more on resolution enhancement techniques (RETs), since their implementation does not require significant changes in fabrication infrastructure. Computational Lithography is the first book to address the computational optimization of RETs in optical lithography, providing an in-depth discussion of optimal optical proximity correction (OPC), phase shifting mask (PSM), and off-axis illumination (OAI) RET tools that use model-based mathematical optimization approaches. The book starts with an introduction to optical lithography systems, electric magnetic field principles, and the fundamentals of optimization from a mathematical point of view. It goes on to describe in detail different types of optimization algorithms to implement RETs. Most of the algorithms developed are based on the application of the OPC, PSM, and OAI approaches and their combinations. Algorithms for coherent illumination as well as partially coherent illumination systems are described, and numerous simulations are offered to illustrate the effectiveness of the algorithms. In addition, mathematical derivations of all optimization frameworks are presented. The accompanying MATLAB® software files for all the RET methods described in the book make it easy for readers to run and investigate the codes in order to understand and apply the optimization algorithms, as well as to design a set of optimal lithography masks. The codes may also be used by readers for their research and development activities in their academic or industrial organizations. An accompanying MATLAB® software guide is also included. An accompanying MATLAB® software guide is included, and readers can download the software to use with the guide at ftp://ftp.wiley.com/public/sci_tech_med/computational_lithography. Tailored for both entry-level and experienced readers, Computational Lithography is meant for faculty, graduate students, and researchers, as well as scientists and engineers in industrial organizations whose research or career field is semiconductor IC fabrication, optical lithography, and RETs. Computational lithography draws from the rich theory of inverse problems, optics, optimization, and computational imaging; as such, the book is also directed to researchers and practitioners in these fields.

Table of Contents:
Preface xi Acknowledgments xiii Acronyms xv 1 Introduction 1 1.1 Optical Lithography 1 1.1.1 Optical Lithography and Integrated Circuits 2 1.1.2 Brief History of Optical Lithography Systems 3 1.2 Rayleigh’s Resolution 5 1.3 Resist Processes and Characteristics 7 1.4 Techniques in Computational Lithography 10 1.4.1 Optical Proximity Correction 11 1.4.2 Phase-Shifting Masks 11 1.4.3 Off-Axis Illumination 14 1.4.4 Second-Generation RETs 15 1.5 Outline 16 2 Optical Lithography Systems 19 2.1 Partially Coherent Imaging Systems 19 2.1.1 Abbe’s Model 19 2.1.2 Hopkins Diffraction Model 22 2.1.3 Coherent and Incoherent Imaging Systems 24 2.2 Approximation Models 25 2.2.1 Fourier Series Expansion Model 25 2.2.2 Singular Value Decomposition Model 29 2.2.3 Average Coherent Approximation Model 32 2.2.4 Discussion and Comparison 34 2.3 Summary 36 3 Rule-Based Resolution Enhancement Techniques 37 3.1 RET Types 37 3.1.1 Rule-Based RETs 37 3.1.2 Model-Based RETs 38 3.1.3 Hybrid RETs 39 3.2 Rule-Based OPC 39 3.2.1 Catastrophic OPC 40 3.2.2 One-Dimensional OPC 40 3.2.3 Line-Shortening Reduction OPC 42 3.2.4 Two-Dimensional OPC 43 3.3 Rule-Based PSM 44 3.3.1 Dark-Field Application 44 3.3.2 Light-Field Application 45 3.4 Rule-Based OAI 46 3.5 Summary 47 4 Fundamentals of Optimization 48 4.1 Definition and Classification 48 4.1.1 Definitions in the Optimization Problem 48 4.1.2 Classification of Optimization Problems 49 4.2 Unconstrained Optimization 50 4.2.1 Solution of Unconstrained Optimization Problem 50 4.2.2 Unconstrained Optimization Algorithms 52 4.3 Summary 57 5 Computational Lithography with Coherent Illumination 58 5.1 Problem Formulation 59 5.2 OPC Optimization 62 5.2.1 OPC Design Algorithm 62 5.2.2 Simulations 64 5.3 Two-Phase PSM Optimization 65 5.3.1 Two-Phase PSM Design Algorithm 65 5.3.2 Simulations 68 5.4 Generalized PSM Optimization 72 5.4.1 Generalized PSM Design Algorithm 72 5.4.2 Simulations 75 5.5 Resist Modeling Effects 79 5.6 Summary 82 6 Regularization Framework 83 6.1 Discretization Penalty 84 6.1.1 Discretization Penalty for OPC Optimization 84 6.1.2 Discretization Penalty for Two-Phase PSM Optimization 86 6.1.3 Discretization Penalty for Generalized PSM Optimization 87 6.2 Complexity Penalty 93 6.2.1 Total Variation Penalty 93 6.2.2 Global Wavelet Penalty 94 6.2.3 Localized Wavelet Penalty 98 6.3 Summary 100 7 Computational Lithography with Partially Coherent Illumination 101 7.1 OPC Optimization 102 7.1.1 OPC Design Algorithm Using the Fourier Series Expansion Model 102 7.1.2 Simulations Using the Fourier Series Expansion Model 105 7.1.3 OPC Design Algorithm Using the Average Coherent Approximation Model 107 7.1.4 Simulations Using the Average Coherent Approximation Model 111 7.1.5 Discussion and Comparison 111 7.2 PSM Optimization 115 7.2.1 PSM Design Algorithm Using the Singular Value Decomposition Model 116 7.2.2 Discretization Regularization for PSM Design Algorithm 118 7.2.3 Simulations 118 7.3 Summary 122 8 Other RET Optimization Techniques 123 8.1 Double-Patterning Method 123 8.2 Post-Processing Based on 2D DCT 128 8.3 Photoresist Tone Reversing Method 131 8.4 Summary 135 9 Source and Mask Optimization 136 9.1 Lithography Preliminaries 137 9.2 Topological Constraint 140 9.3 Source–Mask Optimization Algorithm 141 9.4 Simulations 141 9.5 Summary 145 10 Coherent Thick-Mask Optimization 146 10.1 Kirchhoff Boundary Conditions 147 10.2 Boundary Layer Model 147 10.2.1 Boundary Layer Model in Coherent Imaging Systems 147 10.2.2 Boundary Layer Model in Partially Coherent Imaging Systems 151 10.3 Lithography Preliminaries 153 10.4 OPC Optimization 157 10.4.1 Topological Constraint 157 10.4.2 OPC Optimization Algorithm Based on BL Model Under Coherent Illumination 158 10.4.3 Simulations 159 10.5 PSM Optimization 162 10.5.1 Topological Constraint 162 10.5.2 PSM Optimization Algorithm Based on BL Model Under Coherent Illumination 165 10.5.3 Simulations 165 10.6 Summary 170 11 Conclusions and New Directions of Computational Lithography 171 11.1 Conclusion 171 11.2 New Directions of Computational Lithography 173 11.2.1 OPC Optimization for the Next-Generation Lithography Technologies 173 11.2.2 Initialization Approach for the Inverse Lithography Optimization 173 11.2.3 Double Patterning and Double Exposure Methods in Partially Coherent Imaging System 174 11.2.4 OPC and PSM Optimizations for Inverse Lithography Based on Rigorous Mask Models in Partially Coherent Imaging System 174 11.2.5 Simultaneous Source and Mask Optimization for Inverse Lithography Based on Rigorous Mask Models 174 11.2.6 Investigation of Factors Influencing the Complexity of the OPC and PSM Optimization Algorithms 174 Appendix A: Formula Derivation in Chapter 5 175 Appendix B: Manhattan Geometry 181 Appendix C: Formula Derivation in Chapter 6 182 Appendix D: Formula Derivation in Chapter 7 185 Appendix E: Formula Derivation in Chapter 8 189 Appendix F: Formula Derivation in Chapter 9 194 Appendix G: Formula Derivation in Chapter 10 195 Appendix H: Software Guide 199 References 217 Index 223


Best Sellers


Product Details
  • ISBN-13: 9780470596975
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: John Wiley & Sons Inc
  • Height: 241 mm
  • No of Pages: 256
  • Returnable: N
  • Weight: 508 gr
  • ISBN-10: 047059697X
  • Publisher Date: 06 Aug 2010
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Spine Width: 18 mm
  • Width: 160 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Computational Lithography
John Wiley & Sons Inc -
Computational Lithography
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Computational Lithography

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!