Artificial Neural Networks and Machine Learning – ICANN 2023
Home > Computing and Information Technology > Computer science > Artificial intelligence > Artificial Neural Networks and Machine Learning – ICANN 2023: 32nd International Conference on Artificial Neural Networks, Heraklion, Crete, Greece, September 26–29, 2023, Proceedings, Part III
Artificial Neural Networks and Machine Learning – ICANN 2023: 32nd International Conference on Artificial Neural Networks, Heraklion, Crete, Greece, September 26–29, 2023, Proceedings, Part III

Artificial Neural Networks and Machine Learning – ICANN 2023: 32nd International Conference on Artificial Neural Networks, Heraklion, Crete, Greece, September 26–29, 2023, Proceedings, Part III

|
     0     
5
4
3
2
1




International Edition


About the Book

The 10-volume set LNCS 14254-14263 constitutes the proceedings of the 32nd International Conference on Artificial Neural Networks and Machine Learning, ICANN 2023, which took place in Heraklion, Crete, Greece, during September 26–29, 2023. The 426 full papers, 9 short papers and 9 abstract papers included in these proceedings were carefully reviewed and selected from 947 submissions. ICANN is a dual-track conference, featuring tracks in brain inspired computing on the one hand, and machine learning on the other, with strong cross-disciplinary interactions and applications.  

Table of Contents:
Anomaly Detection in Directed Dynamic Graphs via RDGCN and LSTAN.- Anomaly-Based Insider Threat Detection via Hierarchical Information Fusion.- CSEDesc: CyberSecurity Event Detection with Event Description.- GanNeXt: A New Convolutional GAN for Anomaly Detection.- K-Fold Cross-Valuation for Machine Learning Using Shapley Value.- Malicious Domain Detection Based on Self-supervised HGNNs with Contrastive Learning.- Time Series Anomaly Detection with Reconstruction-Based State-Space Models.- ReDualSVG: Refined Scalable Vector Graphics Generation.- Rethinking Feature Context in Learning Image-guided Depth Completion.- Semantic and Frequency Representation Mining for Face Manipulation Detection.- Single image dehazing network based on serial feature attention.- SS-Net: 3D Spatial-Spectral Network for Cerebrovascular Segmentation in TOF-MRA.- STAN: Spatio-Temporal Alignment Network for No-Reference Video Quality Assessment.- Style Expansion without Forgetting for Handwritten Character Recognition.- TransVQ-VAE: Generating Diverse Images using Hierarchical Representation Learning.- UG-Net: Unsupervised-Guided Network for Biomedical Image Segmentation and Classification.- Unsupervised Shape Enhancement and Factorization Machine Network for 3D Face Reconstruction.- Visible-Infrared Person Re-Identification via Modality Augmentation and Center Constraints.- Water Conservancy Remote Sensing Image Classification Based on Target-Scene Deep Semantic Enhancement.- A Partitioned Detection Architecture for Oriented Objects.- A Personalized Federated Multi-Task Learning Scheme for Encrypted Traffic Classification.- Addressing delays in Reinforcement Learning via Delayed Adversarial Imitation Learning.- An Evaluation of Self-Supervised Learning for Portfolio Diversification.- An exploitation-enhanced Bayesian optimization algorithm for high-dimensional expensive problems.- Balancing Selection and Diversity in Ensemble Learning with Exponential Mixture Model.- CIPER: Combining Invariant and Equivariant Representations Using Contrastive and Predictive Learning.- Contrastive Learning and the Emergence of Attributes Associations.- Contrastive Learning for Sleep Staging based on Inter Subject Correlation.- Diffusion Policies as Multi-Agent Reinforcement Learning Strategies.- Dynamic Memory-based Continual Learning with Generating and Screening.- Enhancing Text2SQL Generation with Syntactic Infor-mation and Multi-Task Learning.- Fast Generalizable Novel View Synthesis with Uncertainty-Aware Sampling.- Find Important Training Dataset by Observing the Training Sequence Similarity.- Generating Question-Answer Pairs for Few-shot Learning.- GFedKRL: Graph Federated Knowledge Re-Learning for Effective Molecular Property Prediction via Privacy Protection.- Gradient-Boosted Based Structured and UnstructuredLearning.- Graph Federated Learning Based on the Decentralized Framework.- Heterogeneous Federated Learning Based on Graph Hypernetwork.- Learning to Resolve Conflicts in Multi-Task Learning.- Neighborhood-oriented Decentralized Learning Communication in Multi-Agent System.- NN-Denoising: A Low-Noise Distantly Supervised Document-Level Relation Extraction Scheme using Natural Language Inference and Negative Sampling.- pFedLHNs: Personalized Federated Learning via Local Hypernetworks.- Prototype Contrastive Learning for Personalized Federated Learning.- PTSTEP: Prompt Tuning for Semantic Typing of Event Processes.- SR-IDS: A Novel Network Intrusion Detection System Based on Self-taught Learning and Representation Learning.- Task-Aware Adversarial Feature Perturbation for Cross-Domain Few-Shot Learning.- Ternary Data, Triangle Decoding, Three Tasks, a Multitask Learning Speech Translation Model.


Best Sellers


Product Details
  • ISBN-13: 9783031442124
  • Publisher: Springer International Publishing AG
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Sub Title: 32nd International Conference on Artificial Neural Networks, Heraklion, Crete, Greece, September 26–29, 2023, Proceedings, Part III
  • ISBN-10: 3031442121
  • Publisher Date: 22 Sep 2023
  • Height: 235 mm
  • No of Pages: 593
  • Returnable: Y
  • Width: 155 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Artificial Neural Networks and Machine Learning – ICANN 2023: 32nd International Conference on Artificial Neural Networks, Heraklion, Crete, Greece, September 26–29, 2023, Proceedings, Part III
Springer International Publishing AG -
Artificial Neural Networks and Machine Learning – ICANN 2023: 32nd International Conference on Artificial Neural Networks, Heraklion, Crete, Greece, September 26–29, 2023, Proceedings, Part III
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Artificial Neural Networks and Machine Learning – ICANN 2023: 32nd International Conference on Artificial Neural Networks, Heraklion, Crete, Greece, September 26–29, 2023, Proceedings, Part III

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!