Applied Regression Analysis and Generalized Linear Models
Home > Mathematics and Science Textbooks > Mathematics > Probability and statistics > Applied Regression Analysis and Generalized Linear Models
Applied Regression Analysis and Generalized Linear Models

Applied Regression Analysis and Generalized Linear Models

|
     0     
5
4
3
2
1




International Edition


About the Book

Combining a modern, data-analytic perspective with a focus on applications in the social sciences, the Third Edition of Applied Regression Analysis and Generalized Linear Models provides in-depth coverage of regression analysis, generalized linear models, and closely related methods, such as bootstrapping and missing data. Updated throughout, this Third Edition includes new chapters on mixed-effects models for hierarchical and longitudinal data. Although the text is largely accessible to readers with a modest background in statistics and mathematics, author John Fox also presents more advanced material in optional sections and chapters throughout the book.  Accompanying website resources containing all answers to the end-of-chapter exercises. Answers to odd-numbered questions, as well as datasets and other student resources are available on the author's website. NEW! Bonus chapter on Bayesian Estimation of Regression Models also available at the author's website.

Table of Contents:
Preface About the Author 1. Statistical Models and Social Science 1.1 Statistical Models and Social Reality 1.2 Observation and Experiment 1.3 Populations and Samples I. DATA CRAFT 2. What Is Regression Analysis? 2.1 Preliminaries 2.2 Naive Nonparametric Regression 2.3 Local Averaging 3. Examining Data 3.1 Univariate Displays 3.2 Plotting Bivariate Data 3.3 Plotting Multivariate Data 4. Transforming Data 4.1 The Family of Powers and Roots 4.2 Transforming Skewness 4.3 Transforming Nonlinearity 4.4 Transforming Nonconstant Spread 4.5 Transforming Proportions 4.6 Estimating Transformations as Parameters* II. LINEAR MODELS AND LEAST SQUARES 5. Linear Least-Squares Regression 5.1 Simple Regression 5.2 Multiple Regression 6. Statistical Inference for Regression 6.1 Simple Regression 6.2 Multiple Regression 6.3 Empirical Versus Structural Relations 6.4 Measurement Error in Explanatory Variables* 7. Dummy-Variable Regression 7.1 A Dichotomous Factor 7.2 Polytomous Factors 7.3 Modeling Interactions 8. Analysis of Variance 8.1 One-Way Analysis of Variance 8.2 Two-Way Analysis of Variance 8.3 Higher-Way Analysis of Variance 8.4 Analysis of Covariance 8.5 Linear Contrasts of Means 9. Statistical Theory for Linear Models* 9.1 Linear Models in Matrix Form 9.2 Least-Squares Fit 9.3 Properties of the Least-Squares Estimator 9.4 Statistical Inference for Linear Models 9.5 Multivariate Linear Models 9.6 Random Regressors 9.7 Specification Error 9.8 Instrumental Variables and Two-Stage Least Squares 10. The Vector Geometry of Linear Models* 10.1 Simple Regression 10.2 Multiple Regression 10.3 Estimating the Error Variance 10.4 Analysis-of-Variance Models III. LINEAR-MODEL DIAGNOSTICS 11. Unusual and Influential Data 11.1 Outliers, Leverage, and Influence 11.2 Assessing Leverage: Hat-Values 11.3 Detecting Outliers: Studentized Residuals 11.4 Measuring Influence 11.5 Numerical Cutoffs for Diagnostic Statistics 11.6 Joint Influence 11.7 Should Unusual Data Be Discarded? 11.8 Some Statistical Details* 12. Non-Normality, Nonconstant Error Variance, Nonlinearity 12.1 Non-Normally Distributed Errors 12.2 Nonconstant Error Variance 12.3 Nonlinearity 12.4 Discrete Data 12.5 Maximum-Likelihood Methods* 12.6 Structural Dimension 13. Collinearity and Its Purported Remedies 13.1 Detecting Collinearity 13.2 Coping With Collinearity: No Quick Fix IV. GENERALIZED LINEAR MODELS 14. Logit and Probit Models for Categorical Response Variables 14.1 Models for Dichotomous Data 14.2 Models for Polytomous Data 14.3 Discrete Explanatory Variables and Contingency Tables 15. Generalized Linear Models 15.1 The Structure of Generalized Linear Models 15.2 Generalized Linear Models for Counts 15.3 Statistical Theory for Generalized Linear Models* 15.4 Diagnostics for Generalized Linear Models 15.5 Analyzing Data From Complex Sample Surveys V. EXTENDING LINEAR AND GENERALIZED LINEAR MODELS 16. Time-Series Regression and Generalized Leasr Squares* 16.1 Generalized Least-Squares Estimation 16.2 Serially Correlated Errors 16.3 GLS Estimation With Autocorrelated Errors 16.4 Correcting OLS Inference for Autocorrelated Errors 16.5 Diagnosing Serially Correlated Errors 16.6 Concluding Remarks 17. Nonlinear Regression 17.1 Polynomial Regression 17.2 Piece-wise Polynomials and Regression Splines 17.3 Transformable Nonlinearity 17.4 Nonlinear Least Squares* 18. Nonparametric Regression 18.1 Nonparametric Simple Regression: Scatterplot Smoothing 18.2 Nonparametric Multiple Regression 18.3 Generalized Nonparametric Regression 19. Robust Regression* 19.1 M Estimation 19.2 Bounded-Influence Regression 19.3 Quantile Regression 19.4 Robust Estimation of Generalized Linear Models 19.5 Concluding Remarks 20. Missing Data in Regression Models 20.1 Missing Data Basics 20.2 Traditional Approaches to Missing Data 20.3 Maximum-Likelihood Estimation for Data Missing at Random* 20.4 Bayesian Multiple Imputation 20.5 Selection Bias and Censoring 21. Bootstrapping Regression Models 21.1 Bootstrapping Basics 21.2 Bootstrap Confidence Intervals 21.3 Bootstrapping Regression Models 21.4 Bootstrap Hypothesis Tests* 21.5 Bootstrapping Complex Sampling Designs 21.6 Concluding Remarks 22. Model Selection, Averaging, and Validation 22.1 Model Selection 22.2 Model Averaging* 22.3 Model Validation VI. MIXED-EFFECT MODELS 23. Linear Mixed-Effects Models for Hierarchical and Longitudinal Data 23.1 Hierarchical and Longitudinal Data 23.2 The Linear Mixed-Effects Model 23.3 Modeling Hierarchical Data 23.4 Modeling Longitudinal Data 23.5 Wald Tests for Fixed Effects 23.6 Likelihood-Ratio Tests of Variance and Covariance Components 23.7 Centering Explanatory Variables, Contextual Effects, and Fixed-Effects Models 23.8 BLUPs 23.9 Statistical Details* 24. Generalized Linear and Nonlinear Mixed-Effects Models 24.1 Generalized Linear Mixed Models 24.2 Nonlinear Mixed Models Appendix A References Author Index Subject Index Data Set Index


Best Sellers


Product Details
  • ISBN-13: 9781452205663
  • Publisher: SAGE Publications Inc
  • Publisher Imprint: SAGE Publications Inc
  • Edition: Revised edition
  • Language: English
  • Returnable: N
  • Width: 177 mm
  • ISBN-10: 1452205663
  • Publisher Date: 26 May 2015
  • Binding: Hardback
  • Height: 254 mm
  • No of Pages: 816
  • Weight: 1454 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Applied Regression Analysis and Generalized Linear Models
SAGE Publications Inc -
Applied Regression Analysis and Generalized Linear Models
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Applied Regression Analysis and Generalized Linear Models

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!