Buy Reinforcement Learning in Python & PyTorch by Pythquill Publishing
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Computer programming / software engineering > Programming and scripting languages: general > Reinforcement Learning in Python & PyTorch: A Practical Guide to Modern RL Algorithms and Python Implementations: From Theory to Deep RL & Real-World Applications: Building Intelligent Agents
Reinforcement Learning in Python & PyTorch: A Practical Guide to Modern RL Algorithms and Python Implementations: From Theory to Deep RL & Real-World Applications: Building Intelligent Agents

Reinforcement Learning in Python & PyTorch: A Practical Guide to Modern RL Algorithms and Python Implementations: From Theory to Deep RL & Real-World Applications: Building Intelligent Agents


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

You'll Learn Grasp the Foundational Theory of Reinforcement Learning: Understand the core components of RL, including the agent-environment interface, Markov Decision Processes (MDPs), and the Bellman equations that form the mathematical backbone of decision-making under uncertainty. Master Classic RL Algorithms: Learn and implement fundamental model-free and model-based algorithms like Monte Carlo methods, Temporal Difference (TD) learning (SARSA and Q-Learning), and Dynamic Programming to solve problems in simplified environments like Grid World and classic games. Implement Modern Deep Reinforcement Learning Algorithms: Use deep neural networks as function approximators to scale RL to complex, high-dimensional problems. You will build and train state-of-the-art agents using Deep Q-Networks (DQN), Policy Gradients (REINFORCE), and Actor-Critic methods (A2C/A3C). Tackle Continuous Control Tasks: Learn advanced actor-critic algorithms like DDPG, TD3, and SAC to train agents for tasks with continuous action spaces, such as robotics control and other complex simulations. Build and Debug Practical RL Systems in Python: Gain hands-on experience by implementing algorithms from scratch using popular libraries like NumPy, PyTorch, and Gymnasium. You will learn essential debugging strategies, hyperparameter tuning techniques, and best practices for evaluating your agents' performance. Explore Advanced and Cutting-Edge Topics: Dive into specialized areas of RL, including Multi-Agent Systems (MARL), Hierarchical Reinforcement Learning (HRL), Model-Based RL, and Offline RL. You will also learn about the revolutionary concept of Reinforcement Learning from Human Feedback (RLHF) and its role in aligning large language models. Apply RL to Real-World Case Studies: Understand how to frame diverse real-world problems-from robotics and game-playing to recommender systems and resource management-as RL problems and select the appropriate algorithms to solve them. Address the Challenges and Ethics of RL: Recognize key challenges like the exploration-exploitation dilemma and the "deadly triad." You will also gain an understanding of the ethical considerations, safety, and societal impact of deploying RL systems.


Best Sellers


Product Details
  • ISBN-13: 9798290162072
  • Publisher: Independently Published
  • Publisher Imprint: Independently Published
  • Height: 279 mm
  • No of Pages: 286
  • Returnable: N
  • Sub Title: A Practical Guide to Modern RL Algorithms and Python Implementations: From Theory to Deep RL & Real-World Applications: Building Intelligent Agents
  • Width: 216 mm
  • ISBN-10: 8290162073
  • Publisher Date: 29 Jun 2025
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Spine Width: 15 mm
  • Weight: 670 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Reinforcement Learning in Python & PyTorch: A Practical Guide to Modern RL Algorithms and Python Implementations: From Theory to Deep RL & Real-World Applications: Building Intelligent Agents
Independently Published -
Reinforcement Learning in Python & PyTorch: A Practical Guide to Modern RL Algorithms and Python Implementations: From Theory to Deep RL & Real-World Applications: Building Intelligent Agents
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Reinforcement Learning in Python & PyTorch: A Practical Guide to Modern RL Algorithms and Python Implementations: From Theory to Deep RL & Real-World Applications: Building Intelligent Agents

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!