Buy Clustering Multidimensional Spatial Datasets With DBSCAN, OPTICS, BIRCH, K-Means, and Two-Step
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Business and Economics > Business and Management > Sales and marketing > Market research > Clustering Multidimensional Spatial Datasets With DBSCAN, OPTICS, BIRCH, K-Means, and Two-Step: A comparative Evaluation of Five Algorithms
Clustering Multidimensional Spatial Datasets With DBSCAN, OPTICS, BIRCH, K-Means, and Two-Step: A comparative Evaluation of Five Algorithms

Clustering Multidimensional Spatial Datasets With DBSCAN, OPTICS, BIRCH, K-Means, and Two-Step: A comparative Evaluation of Five Algorithms


     0     
5
4
3
2
1



International Edition


X
About the Book

This book presents a systematic statistical approach to clustering and density estimation of multidimensional real-life spatial datasets, utilizing density-based clustering methods, DBSCAN, and its extension, OPTICS. It compares their clustering performance to that of the traditional centroid-based K-means clustering algorithm, the hierarchical BIRCH clustering algorithm, and the hybrid two-step clustering algorithm (a combination of hierarchical and K-means), evaluating the quality of clusters generated by the five clustering approaches through four internal quality validation indices and the DBCV validation index. This book primarily provides a detailed description of the key concepts and steps involved in applying the DBSCAN and OPTICS algorithms to cluster multidimensional real-life spatial datasets, interpreting the results, analyzing them critically, and comparing the results with those of three other popular clustering methods. The dbscan R package, used for clustering with DBSCAN and OPTICS algorithms, utilizes a space-partitioning data structure called a K-d tree to perform fast K-distance search and fixed-radius nearest neighbor search, including all neighbors within a fixed radius, thereby identifying clusters efficiently. This approach is a widely adopted, robust platform for identifying arbitrary-shaped clusters in large spatial datasets. This book provides a detailed description of the K-distance concept and its application in determining the optimal value for the radius input parameter through K-distance plots. BIRCH within the stream R package was used to efficiently cluster and identify densely populated regions in multidimensional spatial datasets, delivering the best possible clustering results with minimal input/output cost. This book provides a detailed description of the five clustering algorithms used, complemented by procedures for estimating and choosing input parameters, inference of results, and computing, supported by dimension reduction techniques t-SNE using the tsne R package and principal component analysis through factor analysis in SPSS for extracting components in 2 and 3 dimensions for visual enhancement. It also describes the dimension reduction process in detail and compares the results from the two dimension reduction techniques. This book will be particularly beneficial to those wishing to employ these density-based techniques in research or applications across statistics, data mining and analysis, clinical research, social science, market segmentation, consumer analysis, and many other disciplines.


Best Sellers


Product Details
  • ISBN-13: 9798266004863
  • Publisher: Independently Published
  • Publisher Imprint: Independently Published
  • Height: 235 mm
  • No of Pages: 226
  • Spine Width: 12 mm
  • Weight: 449 gr
  • ISBN-10: 8266004862
  • Publisher Date: 18 Sep 2025
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Sub Title: A comparative Evaluation of Five Algorithms
  • Width: 191 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Clustering Multidimensional Spatial Datasets With DBSCAN, OPTICS, BIRCH, K-Means, and Two-Step: A comparative Evaluation of Five Algorithms
Independently Published -
Clustering Multidimensional Spatial Datasets With DBSCAN, OPTICS, BIRCH, K-Means, and Two-Step: A comparative Evaluation of Five Algorithms
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Clustering Multidimensional Spatial Datasets With DBSCAN, OPTICS, BIRCH, K-Means, and Two-Step: A comparative Evaluation of Five Algorithms

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!