Python Programming
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Computer programming / software engineering > Programming and scripting languages: general > Python Programming: Machine Learning & Data Science, Scikit-learn (Linear Regression, Logistic Regression, KNN, Cross-Validation, Grid, Decision Tree, SVM, Min-Max)(3.1 Python)
Python Programming: Machine Learning & Data Science, Scikit-learn (Linear Regression, Logistic Regression, KNN, Cross-Validation, Grid, Decision Tree, SVM, Min-Max)(3.1 Python)

Python Programming: Machine Learning & Data Science, Scikit-learn (Linear Regression, Logistic Regression, KNN, Cross-Validation, Grid, Decision Tree, SVM, Min-Max)(3.1 Python)


     0     
5
4
3
2
1



International Edition


X
About the Book

Book Description The explosive growth of data in recent decades has transformed how we perceive problems, make decisions, and build intelligent systems. As industries across the globe embrace digital transformation, the demand for tools and techniques to extract meaningful insights from data has never been greater. This book, Machine Learning & Data Science: Scikit-learn is born out of that growing need-a practical, focused guide to foundational machine learning algorithms and their implementation using one of the most widely adopted libraries in Python: Scikit-learn. This book is designed for students, professionals, and enthusiasts seeking to build a strong conceptual and practical understanding of key machine learning techniques. Rather than overwhelming the reader with theory, we take a hands-on, example-driven approach centered on real-world applications and reproducible code. Each chapter builds from the ground up-explaining not just how an algorithm works, but why it behaves the way it does, and when to apply it effectively. We begin with core algorithms such as Linear Regression, Logistic Regression, and K-Nearest Neighbors (KNN)-laying the groundwork for predictive modeling and classification tasks. Next, we introduce model validation techniques like Cross-Validation and Grid Search, essential tools for evaluating and optimizing model performance. Building upon this foundation, we explore more complex algorithms like Decision Trees and Support Vector Machines (SVMs), which offer greater flexibility and power in modeling nonlinear patterns. Additionally, we highlight the importance of feature scaling techniques like Min-Max normalization, which often determine the success of machine learning models. These techniques, though sometimes overlooked, are vital for ensuring that algorithms perform as expected and generalize well to unseen data. Throughout this book, we rely on Scikit-learn for implementation-not only because of its simplicity and power, but also because it exemplifies best practices in structuring machine learning workflows. Readers will gain practical experience with the tools and pipelines used by data scientists and machine learning practitioners in real projects. Whether you are taking your first steps into machine learning or looking to deepen your understanding of algorithmic foundations, this book provides a concise and reliable guide. May it serve as both a roadmap and a reference for your journey into the fascinating world of machine learning and data science. - The Author


Best Sellers


Product Details
  • ISBN-13: 9798231631063
  • Publisher: E3
  • Publisher Imprint: E3
  • Height: 279 mm
  • No of Pages: 628
  • Returnable: N
  • Returnable: N
  • Spine Width: 32 mm
  • Weight: 1481 gr
  • ISBN-10: 8231631062
  • Publisher Date: 09 May 2025
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Returnable: N
  • Series Title: 3.1 Python
  • Sub Title: Machine Learning & Data Science, Scikit-learn (Linear Regression, Logistic Regression, KNN, Cross-Validation, Grid, Decision Tree, SVM, Min-Max)
  • Width: 216 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Python Programming: Machine Learning & Data Science, Scikit-learn (Linear Regression, Logistic Regression, KNN, Cross-Validation, Grid, Decision Tree, SVM, Min-Max)(3.1 Python)
E3 -
Python Programming: Machine Learning & Data Science, Scikit-learn (Linear Regression, Logistic Regression, KNN, Cross-Validation, Grid, Decision Tree, SVM, Min-Max)(3.1 Python)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Python Programming: Machine Learning & Data Science, Scikit-learn (Linear Regression, Logistic Regression, KNN, Cross-Validation, Grid, Decision Tree, SVM, Min-Max)(3.1 Python)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!