Deep Learning for Agricultural Visual Perception
Home > Science, Technology & Agriculture > Agriculture and farming > Agronomy and crop production > Deep Learning for Agricultural Visual Perception: Crop Pest and Disease Detection
Deep Learning for Agricultural Visual Perception: Crop Pest and Disease Detection

Deep Learning for Agricultural Visual Perception: Crop Pest and Disease Detection


     0     
5
4
3
2
1



International Edition


X
About the Book

This monograph provides a detailed and systematic introduction to the application of deep learning technology in the intelligent monitoring of crop diseases and pests. Taking 24 types of crop pests, wheat aphids, and wheat diseases with complex backgrounds as examples, a large-scale crop pest and disease dataset was constructed to provide necessary data support for the deep learning module. Various schemes for identifying and detecting large-scale crop diseases and pests based on deep convolutional neural network technology have also been proposed. This book can be used as a reference for teachers and students majoring in agriculture, computer science, artificial intelligence, intelligent science and technology, and other related fields in higher education institutions. It can also be used as a reference book for researchers in fields such as image processing technology, intelligent manufacturing, and high-tech applications.

Table of Contents:
Chapter 1. Introduction.- Chapter 2. Deep Learning Technology.- Chapter 3. Large-Scale Agricultural Pest and Disease Datasets.- Chapter 4. Sampling-balanced Region Proposal Network for Pest Detection.- Chapter 5. Crop Pest Detection Methods in Field.- Chapter 6. A CNN-based Arbitrary-oriented Wheat Disease Detection Method.

About the Author :
Rujing Wang is Professor of Hefei Institute of Material Science, Chinese Academy of Sciences; Chief Engineer of Hefei Institute of Intelligent Machinery, Chinese Academy of Sciences; Professor and Doctoral Supervisor of University of Science and Technology of China; Director of the Smart Agriculture Professional Committee of the National Association of Automation; Director of the Anhui Provincial Technical Innovation Center for Agricultural Sensors and Intelligent Sensing; Director of the Anhui Provincial Key Laboratory for Bionic Sensing and Advanced Robotics Technology; Director of the Anhui Provincial Intelligent Agriculture Engineering Laboratory; and Deputy Editor in Chief of the Journal of Pattern Recognition and Artificial Intelligence. He has published over 200 academic papers and 1 academic monograph, obtained over 100 national invention patents and over 80 national software copyrights, and won one second prize of the National Science and Technology Progress Award and two first prizes of the Anhui Province Science and Technology Progress Award. Lin Jiao received the PhD degree in computer science and technology from the University of Science and Technology of China, Hefei, China, in 2021. She was an Honoree of Excellent Award of President of Chinese Academy of Sciences, in 2020. She is currently a lecturer at the School of Internet, Anhui University, Hefei, China. She has published over 20 papers and served as a reviewer for more than 10 journals/conferences. Her research interests include machine learning, deep learning, pattern recognition, computer vision, and agricultural informatization. Kang Liu received his BE degree in automation from Donghua University, Shanghai, China, in 2017, and PhD degree in control science and engineering from the University of Science and Technology of China, Hefei, China, in 2022. He was an Honoree of Excellent Award of President of Chinese Academy of Sciences, China, in 2022 and Outstanding Graduates of Anhui Province, in 2022. He is currently a postdoctoral researcher with the Department of Computer Science, University of Sheffield, Sheffield, United Kingdom. He has published over 15 papers and served as a reviewer for more than 20 journals/conferences. His research interests include theoretical research and engineering applications in intelligence control algorithms and precision agriculture systems.


Best Sellers


Product Details
  • ISBN-13: 9789819949724
  • Publisher: Springer Verlag, Singapore
  • Publisher Imprint: Springer Verlag, Singapore
  • Height: 235 mm
  • No of Pages: 131
  • Returnable: Y
  • Width: 155 mm
  • ISBN-10: 9819949726
  • Publisher Date: 21 Sep 2023
  • Binding: Hardback
  • Language: English
  • Returnable: Y
  • Sub Title: Crop Pest and Disease Detection


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Deep Learning for Agricultural Visual Perception: Crop Pest and Disease Detection
Springer Verlag, Singapore -
Deep Learning for Agricultural Visual Perception: Crop Pest and Disease Detection
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Deep Learning for Agricultural Visual Perception: Crop Pest and Disease Detection

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!