Buy Equivariant And Coordinate Independent Convolutional Networks: A Gauge Field Theory Of Neural Networks
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Mathematics > Applied mathematics > Equivariant And Coordinate Independent Convolutional Networks: A Gauge Field Theory Of Neural Networks: (1 Progress In Data Science)
Equivariant And Coordinate Independent Convolutional Networks: A Gauge Field Theory Of Neural Networks: (1 Progress In Data Science)

Equivariant And Coordinate Independent Convolutional Networks: A Gauge Field Theory Of Neural Networks: (1 Progress In Data Science)


     0     
5
4
3
2
1



Releasing Soon (International Edition)


X
About the Book

What is the appropriate geometric structure for neural networks that process spatial signals on Euclidean spaces or more general manifolds? This question takes us on a journey which leads to a gauge field theory of convolutional networks.Feature vector fields: The spatial signals we are interested in are fields of feature vectors. Feature fields allow to describe data like images, audio, videos, point clouds, or tensor fields, such as fluid flows and electromagnetic fields.Equivariant networks commute with actions of some symmetry group on their feature spaces. The relevant group actions in this work are geometric transformations of feature fields, like translations, rotations, or reflections of images. Equivariant models generalize everything they learn over the considered group of transformations. This property makes them significantly more data efficient, interpretable, and robust in comparison to non-equivariant models.Convolutional Neural Networks (CNNs) are the most common network architecture for processing feature fields. Conventional CNNs operate on Euclidean spaces and are translation equivariant, i.e. position independent. This work explains how to extend CNNs to be equivariant under more general symmetries of space.Coordinate independence: Manifolds are in general not equipped with a canonical choice of coordinates. Feature fields and neural network layers are hence required to be coordinate independent, that is, expressible relative to different frames of reference. The ambiguity of local frames represents the gauge freedom of our neural field theory. We show that the demand for coordinate independence requires CNNs to be equivariant under local gauge transformations.To offer an easy entry, the first part of this work focuses on the representation theory of equivariant convolutional networks on Euclidean spaces. The insights gained in the Euclidean setting are subsequently leveraged to develop the full gauge theory of coordinate independent CNNs on Riemannian manifolds. In the last part, we turn to a discussion of practical applications on specific manifolds. A comprehensive literature review demonstrates the generality of our theory by showing for more than 100 models from the literature how they can be understood as specific instantiations of 'Equivariant and Coordinate Independent CNNs'.


Best Sellers


Product Details
  • ISBN-13: 9789819806621
  • Publisher: World Scientific Publishing Co Pte Ltd
  • Publisher Imprint: World Scientific Publishing Co Pte Ltd
  • Language: English
  • Series Title: 1 Progress In Data Science
  • ISBN-10: 9819806623
  • Publisher Date: 05 Feb 2026
  • Binding: Hardback
  • No of Pages: 592


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Equivariant And Coordinate Independent Convolutional Networks: A Gauge Field Theory Of Neural Networks: (1 Progress In Data Science)
World Scientific Publishing Co Pte Ltd -
Equivariant And Coordinate Independent Convolutional Networks: A Gauge Field Theory Of Neural Networks: (1 Progress In Data Science)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Equivariant And Coordinate Independent Convolutional Networks: A Gauge Field Theory Of Neural Networks: (1 Progress In Data Science)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!