Data-Driven Clinical Decision-Making Using Deep Learning in Imaging
Home > Medicine & Health Science textbooks > Clinical and internal medicine > Medical diagnosis > Data-Driven Clinical Decision-Making Using Deep Learning in Imaging: (152 Studies in Big Data)
Data-Driven Clinical Decision-Making Using Deep Learning in Imaging: (152 Studies in Big Data)

Data-Driven Clinical Decision-Making Using Deep Learning in Imaging: (152 Studies in Big Data)


     0     
5
4
3
2
1



International Edition


X
About the Book

This book explores cutting-edge medical imaging advancements and their applications in clinical decision-making. The book contains various topics, methodologies, and applications, providing readers with a comprehensive understanding of the field's current state and prospects. It begins with exploring domain adaptation in medical imaging and evaluating the effectiveness of transfer learning to overcome challenges associated with limited labeled data. The subsequent chapters delve into specific applications, such as improving kidney lesion classification in CT scans, elevating breast cancer research through attention-based U-Net architecture for segmentation and classifying brain MRI images for neurological disorders. Furthermore, the book addresses the development of multimodal machine learning models for brain tumor prognosis, the identification of unique dermatological signatures using deep transfer learning, and the utilization of generative adversarial networks to enhance breast cancer detection systems by augmenting mammogram images. Additionally, the authors present a privacy-preserving approach for breast cancer risk prediction using federated learning, ensuring the confidentiality and security of sensitive patient data. This book brings together a global network of experts from various corners of the world, reflecting the truly international nature of its research.

Table of Contents:
Improved Classification of Kidney Lesions in CT scans using CNN with Attention Layers: Achieving High Accuracy and Performance.- Domain Adaptation in Medical Imaging: Evaluating the Effectiveness of Transfer Learning.- Elevating Breast Cancer Research: Discovering New Frontiers with Attention-Based U-Net Architecture for Segmentation.- Early Skin Cancer Detection in Computer Vision: Leveraging Attention-Based Deep Ensembles.- Incorporating Residual Connections into a Multi-Channel CNN for Interpretable Lung Cancer Detection in Digital Pathology.- Privacy Preserving Breast Cancer Risk Prediction with Mammography Images Using Federated Learning.- Federated Learning for Scabies Recognition: A Privacy-Preserving Approach.- An Improved Transfer Learning based Approach for the Classification of Multi-Stage HER2 Breast Cancer from Hematoxylin and Eosin Images.- Unveiling the Unique Dermatological Signatures of Human Monkeypox, Chickenpox, and Measles through Deep Transfer Learning Model.-  Development of a Deep Learning Framework for Brain Tumors Classification Using Transfer Learning.- Featured-based brain tumor image registration using a Fussy-clustering segmentation approach.- Enhancing Breast Cancer Detection Systems: Augmenting and Upscaling Mammogram Images using Generative Adversarial Networks.- A Deep Learning Approach Bone Marrow Cancer Cell Multiclass Classification using Microscopic Images.- Detecting Skin Cancer Through the Utilization of Deep Convolutional Neural Networks and Generative Adversarial Networks.

About the Author :
M. F. Mridha (Senior Member, IEEE) is currently working as Associate Professor at the Department of Computer Science, American International University-Bangladesh (AIUB). Before that he worked as Associate Professor and Chairman in the Department of Computer Science and Engineering, Bangladesh University of Business and Technology (BUBT). He also worked as CSE Department Faculty Member at the University of Asia Pacific and as Graduate Head from 2012 to 2019. He received his Ph.D. in AI/ML from Jahangirnagar University in the year 2017. His research experience, within both academia and industry, results in over 150 journal and conference publications. His research work contributed to the reputed Journal of Scientific Reports Nature, Knowledge-Based Systems, Artificial Intelligence Review, Engineering Applications of Artificial Intelligence, IEEE Access, Sensors, Cancers, Biology and Applied Sciences, etc. He has served as Program Committee Member in several international conferences/workshops. He served as Academic Editor of several journals including PLOS ONE Journal. He has served as Reviewer of reputed journals like IEEE Transactions on Neural Networks, IEEE Access, Knowledge Base System, Expert System, Bioinformatics, Springer Nature, etc. and PC Member of many international conferences like ICCIT, HONET, ICIEV, IJCCI, ICAEE, ICCAIE, ICSIPA, SCORED, ISIEA, APACE, ICOS, ISCAIE, BEIAC, ISWTA, IC3e, ISWTA, CoAST, icIVPR, ICSCT, 3ICT, DATA21, etc. Nilanjan Dey is Associate Professor at the Department of Computer Science and Engineering, Techno International New Town, Kolkata, India. He is Visiting Fellow at the University of Reading, UK. He also holds a position of Adjunct Professor at Ton Duc Thang University, Ho Chi Minh City, Vietnam. Previously, he held an honorary position of Visiting Scientist at Global Biomedical Technologies Inc., CA, USA (2012–2015). He was awarded his Ph.D. from Jadavpur University in 2015. He is Editor-in-Chief of the International Journal of Ambient Computing and Intelligence , IGI Global, USA. He is Series Co-editor of Springer Tracts in Nature-Inspired Computing (Springer Nature), Data-Intensive Research (Springer Nature), and Advances in Ubiquitous Sensing Applications for Healthcare (Elsevier). He is Associate Editor of IET Image Processing and Editorial Board Member of Complex & Intelligent Systems, Springer Nature, Applied Soft Computing, Elsevier, etc. He is having 35 authored books and over 300 publications in the area of medical imaging, machine learning, computer-aided diagnosis, data mining, etc. He is Fellow of IETE and Senior Member of IEEE.


Best Sellers


Product Details
  • ISBN-13: 9789819739653
  • Publisher: Springer Verlag, Singapore
  • Publisher Imprint: Springer Nature
  • Height: 235 mm
  • No of Pages: 274
  • Series Title: 152 Studies in Big Data
  • ISBN-10: 9819739659
  • Publisher Date: 14 Aug 2024
  • Binding: Hardback
  • Language: English
  • Returnable: Y
  • Width: 155 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Data-Driven Clinical Decision-Making Using Deep Learning in Imaging: (152 Studies in Big Data)
Springer Verlag, Singapore -
Data-Driven Clinical Decision-Making Using Deep Learning in Imaging: (152 Studies in Big Data)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Data-Driven Clinical Decision-Making Using Deep Learning in Imaging: (152 Studies in Big Data)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!