Cracking the Machine Learning Code: Technicality or Innovation?
Home > Computing and Information Technology > Computer science > Artificial intelligence > Cracking the Machine Learning Code: Technicality or Innovation?: (1155 Studies in Computational Intelligence)
Cracking the Machine Learning Code: Technicality or Innovation?: (1155 Studies in Computational Intelligence)

Cracking the Machine Learning Code: Technicality or Innovation?: (1155 Studies in Computational Intelligence)


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Employing off-the-shelf machine learning models is not an innovation. The journey through technicalities and innovation in the machine learning field is ongoing, and we hope this book serves as a compass, guiding the readers through the evolving landscape of artificial intelligence. It typically includes model selection, parameter tuning and optimization, use of pre-trained models and transfer learning, right use of limited data, model interpretability and explainability, feature engineering and autoML robustness and security, and computational cost – efficiency and scalability. Innovation in building machine learning models involves a continuous cycle of exploration, experimentation, and improvement, with a focus on pushing the boundaries of what is achievable while considering ethical implications and real-world applicability. The book is aimed at providing a clear guidance that one should not be limited to building pre-trained models to solve problems using the off-the-self basic building blocks. With primarily three different data types: numerical, textual, and image data, we offer practical applications such as predictive analysis for finance and housing, text mining from media/news, and abnormality screening for medical imaging informatics. To facilitate comprehension and reproducibility, authors offer GitHub source code encompassing fundamental components and advanced machine learning tools.

Table of Contents:
Chapter 1. Introduction.- Chapter 2. Data modalities and preprocessing.- Chapter 3. Basic building blocks: From shallow to deep.- Chapter 4. Experimental Setup.- Chapter 5: Case study: from numbers to images.- Chapter 6: Extension: Multimodal learning representation.- Chapter 7. Where is the innovation?.

About the Author :
Prof. KC Santosh—a highly accomplished AI expert—is the chair of the Department of Computer Science and the founding director of the Applied AI Research Lab at the University of South Dakota. He is also served the National Institutes of Health as a research fellow and LORIA Research Center as a postdoctoral research scientist, in collaboration with industrial partner, ITESOFT, France. He earned his Ph.D. in Computer Science—Artificial Intelligence from INRIA Nancy Grand East Research Center (France). With funding exceeding $2 million from sources like DOD, NSF, and SDBOR, he has authored 10 books and over 250 peer-reviewed research articles, including IEEE TPAMI. He serves as an associate editor for esteemed journals such as IEEE Transactions on AI, Int. J of Machine Learning & Cybernetics, and Int. J of Pattern Recognition & Artificial Intelligence. He, founder of AI programs at USD, has significantly boosted graduate enrollment by over 3,000% in just three years, establishing USD as a leader in AI within South Dakota. Dr. Rodrigue Rizk is an assistant professor at the University of South Dakota, holding a B.E. degree in computer and communication engineering with Summa Cum Laude highest honor distinction from Notre Dame University. He earned both his M.S. and Ph.D. degrees in Computer Engineering from the University of Louisiana at Lafayette, maintaining 4.0 GPA. Specializing in the dynamic interplay between software and hardware, his research interests span high-level computational systems, artificial intelligence, quantum computing, and more. He is a licensed professional engineer, a member of the Order of the Engineer, and holds various accolades, including the Richard G. and Mary B. Neiheisel endowed fellowship. He is a lifetime member of the Phi Kappa Phi honor society and a professional member of ACM and IEEE. His contributions have earned him numerous awards, including the President’s Award for Educational Excellence and Outstanding Academic Achievement. Mr. Siddhi K Bajracharya is a research fellow for the Applied AI Research Lab, Department of Computer Science at the University of South Dakota. His research study focuses on building generic and/or generalized machine learning models for multiple data types: numbers, texts, and images.


Best Sellers


Product Details
  • ISBN-13: 9789819727223
  • Publisher: Springer Verlag, Singapore
  • Publisher Imprint: Springer Nature
  • Height: 235 mm
  • No of Pages: 127
  • Series Title: 1155 Studies in Computational Intelligence
  • ISBN-10: 9819727227
  • Publisher Date: 10 May 2025
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Width: 155 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Cracking the Machine Learning Code: Technicality or Innovation?: (1155 Studies in Computational Intelligence)
Springer Verlag, Singapore -
Cracking the Machine Learning Code: Technicality or Innovation?: (1155 Studies in Computational Intelligence)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Cracking the Machine Learning Code: Technicality or Innovation?: (1155 Studies in Computational Intelligence)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!