Tsunami Data Assimilation for Early Warning
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Sciences & Environment > Earth sciences > Volcanology and seismology > Tsunami Data Assimilation for Early Warning: (Springer Theses)
Tsunami Data Assimilation for Early Warning: (Springer Theses)

Tsunami Data Assimilation for Early Warning: (Springer Theses)


     0     
5
4
3
2
1



International Edition


X
About the Book

This book focuses on proposing a tsunami early warning system using data assimilation of offshore data. First, Green’s Function-based Tsunami Data Assimilation (GFTDA) is proposed to reduce the computation time for assimilation. It can forecast the waveform at Points of Interest (PoIs) by superposing Green’s functions between observational stations and PoIs. GFTDA achieves an equivalently high accuracy of tsunami forecasting to the previous approaches, while saving sufficient time to achieve an early warning. Second, a modified tsunami data assimilation method is explored for regions with a sparse observation network. The method uses interpolated waveforms at virtual stations to construct the complete wavefront for tsunami propagation. Its application to the 2009 Dusky Sound, New Zealand earthquake, and the 2015 Illapel earthquake revealed that adopting virtual stations greatly improved the tsunami forecasting accuracy for regions without a dense observation network. Finally, a real-time tsunami detection algorithm using Ensemble Empirical Mode Decomposition (EEMD) is presented. The tsunami signals of the offshore bottom pressure gauge can be automatically separated from the tidal components, seismic waves, and background noise. The algorithm could detect tsunami arrival with a short detection delay and accurately characterize the tsunami amplitude. Furthermore, the tsunami data assimilation approach is combined with the real-time tsunami detection algorithm, which is applied to the tsunami of the 2016 Fukushima earthquake. The proposed tsunami data assimilation approach can be put into practice with the help of the real-time tsunami detection algorithm.

Table of Contents:
Introduction.- Green’s Function-based Tsunami Data Assimilation (GFTDA).- Tsunami Data Assimilation with Interpolated Virtual Stations.- Real-Time Tsunami Detection based on Ensemble Empirical Mode Decomposition (EEMD).- Real-time Tsunami Data Assimilation of S-net Pressure Gauge Records during the 2016 Fukushima Earthquake.- Tsunami Early Warning System Using Data Assimilation of Offshore Data.- Summary.

About the Author :
Dr. Yuchen Wang is a postdoctoral researcher at Japan Agency for Marine-Earth Science and Technology. He received the bachelor’s degree in physics at Peking University. He received the master’s degree and Ph.D. degree in earth and planetary science at the University of Tokyo. His research interest is giant earthquakes and tsunamis. He has been working on tsunami early warning for disaster mitigation. He improved data assimilation algorithm to achieve a rapid and accuracy tsunami forecast. He has published 21 peer-reviewed journal articles and worked as the reviewer for 9 journals including Nature Communications, Journal of Geophysical Research: Solid Earth, and Natural Hazards and Earth System Sciences. He is the principal investigator of the KAKENHI 19J20203 on tsunami data assimilation sponsored by the Japan Society for the Promotion of Science. His research is in collaboration with researchers all over the world.


Best Sellers


Product Details
  • ISBN-13: 9789811973383
  • Publisher: Springer Verlag, Singapore
  • Publisher Imprint: Springer Verlag, Singapore
  • Height: 235 mm
  • No of Pages: 97
  • Returnable: Y
  • Width: 155 mm
  • ISBN-10: 9811973385
  • Publisher Date: 27 Oct 2022
  • Binding: Hardback
  • Language: English
  • Returnable: Y
  • Series Title: Springer Theses


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Tsunami Data Assimilation for Early Warning: (Springer Theses)
Springer Verlag, Singapore -
Tsunami Data Assimilation for Early Warning: (Springer Theses)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Tsunami Data Assimilation for Early Warning: (Springer Theses)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!