Deep Learning in Solar Astronomy
Home > Mathematics and Science Textbooks > Astronomy, space and time > Deep Learning in Solar Astronomy: (SpringerBriefs in Computer Science)
Deep Learning in Solar Astronomy: (SpringerBriefs in Computer Science)

Deep Learning in Solar Astronomy: (SpringerBriefs in Computer Science)


     0     
5
4
3
2
1



International Edition


X
About the Book

The volume of data being collected in solar astronomy has exponentially increased over the past decade and we will be entering the age of petabyte solar data. Deep learning has been an invaluable tool exploited to efficiently extract key information from the massive solar observation data, to solve the tasks of data archiving/classification, object detection and recognition. Astronomical study starts with imaging from recorded raw data, followed by image processing, such as image reconstruction, inpainting and generation, to enhance imaging quality. We study deep learning for solar image processing. First, image deconvolution is investigated for synthesis aperture imaging. Second, image inpainting is explored to repair over-saturated solar image due to light intensity beyond threshold of optical lens. Third, image translation among UV/EUV observation of the chromosphere/corona, Ha observation of the chromosphere and magnetogram of the photosphere is realized by using GAN, exhibiting powerful image domain transfer ability among multiple wavebands and different observation devices. It can compensate the lack of observation time or waveband. In addition, time series model, e.g., LSTM, is exploited to forecast solar burst and solar activity indices. This book presents a comprehensive overview of the deep learning applications in solar astronomy. It is suitable for the students and young researchers who are major in astronomy and computer science, especially interdisciplinary research of them.

Table of Contents:
Chapter 1: Introduction.- Chapter 2: Classical deep learning models.- Chapter 3: Deep learning in solar image classification tasks.- Chapter 4: Deep learning in solar object detection tasks.- Chapter 5: Deep learning in solar image generation tasks.- Chapter 6: Deep learning in solar forecasting tasks.

About the Author :
Prof. Long Xu received his Ph.D. degree from the Institute of Computing Technology, Chinese Academy of Sciences (CAS) in 2009. He was selected into the 100-Talents Plan of CAS in 2014. From 2014 to 2022, he was with the National Astronomical Observatories, CAS. He is currently with both National Space Science Center, CAS and Peng Cheng Laboratory. His research interests include image/video processing, solar radio astronomy, wavelet, machine learning, and computer vision. He has published more than 100 academic papers, and a book “Visual quality assessment by machine learning” with Springer in 2015.Prof. Yihua Yan received his Ph.D. degree from the Dalian University of Technology in 1990. He was a Foreign Research Fellow with the NAOJ (Japan) from 1995 to 1996, and an Alexander von Humboldt Fellow with the Astronomical Institute, Wurzburg University, Germany, from 1996 to 1997. He was the President of IAU Division E: Sun and Heliosphere from 2015 to 2018. He was the Director of the CAS Key Laboratory of Solar Activity (2008-2019), and the Director of Solar Physics Division (2013-2021), at NAOC. He is currently a Professor and a Chief Scientist, National Space Science Center, Chinese Academy of Sciences. Dr. Xin Huang received the Ph.D. degree from Harbin Institute of Technology in 2010. He was an associate professor at Solar Activity Prediction Center, NAOC from 2013. Now, he is with the Space Environment Prediction Center, National Space Science Center, Chinese Academy of Sciences. His research interests include data mining, image processing and short-term solar activity forecasting. He has published more than 20 academic papers, including one of the top 1% most cited papers in IOP Publishing’s astrophysics journals, published over the period of 2018-2020.

Review :
“Each application is described with sufficient detail to give the reader an understanding of how AI is used and how its use compares with older tools used for the same purposes. The writing is clear … and an excessive use of acronyms. Relevant images and tables enhance the reader’s understanding; many references accompany each chapter. This book should appeal to those interested in either AI or the field of solar astronomy.” (G. R. Mayforth, Computing Reviews, November 22, 2023)


Best Sellers


Product Details
  • ISBN-13: 9789811927454
  • Publisher: Springer Verlag, Singapore
  • Publisher Imprint: Springer Verlag, Singapore
  • Height: 235 mm
  • No of Pages: 92
  • Returnable: N
  • Width: 155 mm
  • ISBN-10: 9811927456
  • Publisher Date: 28 May 2022
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Series Title: SpringerBriefs in Computer Science


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Deep Learning in Solar Astronomy: (SpringerBriefs in Computer Science)
Springer Verlag, Singapore -
Deep Learning in Solar Astronomy: (SpringerBriefs in Computer Science)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Deep Learning in Solar Astronomy: (SpringerBriefs in Computer Science)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!