Privacy Preservation in IoT: Machine Learning Approaches
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Computer security > Privacy and data protection > Privacy Preservation in IoT: Machine Learning Approaches: A Comprehensive Survey and Use Cases(SpringerBriefs in Computer Science)
Privacy Preservation in IoT: Machine Learning Approaches: A Comprehensive Survey and Use Cases(SpringerBriefs in Computer Science)

Privacy Preservation in IoT: Machine Learning Approaches: A Comprehensive Survey and Use Cases(SpringerBriefs in Computer Science)


     0     
5
4
3
2
1



International Edition


X
About the Book

This book aims to sort out the clear logic of the development of machine learning-driven privacy preservation in IoTs, including the advantages and disadvantages, as well as the future directions in this under-explored domain. In big data era, an increasingly massive volume of data is generated and transmitted in Internet of Things (IoTs), which poses great threats to privacy protection. Motivated by this, an emerging research topic, machine learning-driven privacy preservation, is fast booming to address various and diverse demands of IoTs. However, there is no existing literature discussion on this topic in a systematically manner. The issues of existing privacy protection methods (differential privacy, clustering, anonymity, etc.) for IoTs, such as low data utility, high communication overload, and unbalanced trade-off, are identified to the necessity of machine learning-driven privacy preservation. Besides, the leading and emerging attacks pose further threats to privacy protection in this scenario. To mitigate the negative impact, machine learning-driven privacy preservation methods for IoTs are discussed in detail on both the advantages and flaws, which is followed by potentially promising research directions. Readers may trace timely contributions on machine learning-driven privacy preservation in IoTs. The advances cover different applications, such as cyber-physical systems, fog computing, and location-based services. This book will be of interest to forthcoming scientists, policymakers, researchers, and postgraduates.

Table of Contents:
Chapter 1 Introduction.- Chapter 2 Current Methods of Privacy Protection in IoTs.- Chapter 3 Decentralized Privacy Protection of IoTs using Blockchain-Enabled Federated Learning.- Chapter 4 Personalized Privacy Protection of IoTs using GAN-Enhanced Differential Privacy.- Chapter 5 Hybrid Privacy Protection of IoT using Reinforcement Learning.- Chapter 6 Future Directions.- Chapter 7 Summary and Outlook.

About the Author :
Dr. Youyang Qu received his Ph.D. degree in Information Technology at School of Information Technology, Deakin University, in 2019, and he is currently serving as Research Fellow in Deakin University. His research interests focus on dealing with security and customizable privacy issues in blockchain, social networks, machine learning, and IoT. He has over 30 publications on top journals and magazines such as IEEE IOTJ, IEEE TII, and IEEE Wireless Communication. He has served as TPC Member for IEEE flagship conferences including IEEE ICC and IEEE Globecom. He is also Publicity Chair of SPDE 2020.   Dr. Longxiang Gao received a Ph.D. in Computer Science from Deakin University, Australia. He is currently Senior Lecturer at the School of Information Technology, Deakin University. Before joining Deakin University, he was Post-doctoral Research Fellow at IBM Research and Development Australia. His research interests include data processing, mobile social networks, fog computing, and network security. He has over 80 publications, including patents, monographs, book chapters, and journal and conference papers. Some of his publications have been published in the top venues, such as IEEE TMC, IEEE IoT, IEEE TDSC, and IEEE TVT. He received the 2012 Chinese Government Award for Outstanding Students Abroad (Ranked No.1 in Victoria and Tasmania consular districts). Dr. Gao is Senior Member of IEEE and is active in IEEE Communication Society. He has served as TPC Co-Chair, Publicity Co-Chair, Organization Chair, and TPC Member for many international conferences.   Professor Shui Yu is currently Full Professor of School of Computer Science, University of Technology Sydney, Australia. Dr. Yu's research interest includes security and privacy, networking, big data, and mathematical modelling. He has published two monographs and edited two books, more than 200 technical papers, including top journals and top conferences, such as IEEE TPDS, TC,TIFS, TMC, TKDE, TETC, ToN, and INFOCOM. Dr. Yu initiated the research field of networking for big data in 2013. Dr. Yu actively serves his research communities in various roles. He is currently serving the editorial boards of IEEE Communications Surveys and Tutorials, IEEE Communications Magazine, IEEE Internet of Things Journal, IEEE Communications Letters, IEEE Access, and IEEE Transactions on Computational Social Systems. He has served many international conferences as Member of organizing committee, such as Publication Chair for IEEE Globecom 2015, IEEE INFOCOM 2016 and 2017, TPC Chair for IEEE BigDataService 2015, and General Chair for ACSW 2017. Dr Yu is Final Voting Member for a few NSF China programs in 2017. He is Senior Member of IEEE, Member of AAAS and ACM, Vice Chair of Technical Committee on Big Data of IEEE Communication Society, and Distinguished Lecturer of IEEE Communication Society.   Professor Yong Xiang received the Ph.D. degree in electrical and electronic engineering from the University of Melbourne, Australia. He is currently Professor and Director of the Artificial Intelligence and Image Processing Research Cluster with the School of Information Technology, Deakin University, Australia. His research interests include information security and privacy, multimedia (speech/image/video) processing, wireless sensor networks, massive MIMO, and bio-medical signal processing. He has authored more than 110 refereed journal and conference papers in these areas. He is Associate Editor of the IEEE SIGNAL PROCESSING LETTERS and the IEEE ACCESS. He has served as Program Chair, TPC Chair, Symposium Chair, and Session Chair for a number of international conferences.


Best Sellers


Product Details
  • ISBN-13: 9789811917967
  • Publisher: Springer Verlag, Singapore
  • Publisher Imprint: Springer Verlag, Singapore
  • Height: 235 mm
  • No of Pages: 119
  • Returnable: Y
  • Sub Title: A Comprehensive Survey and Use Cases
  • ISBN-10: 9811917965
  • Publisher Date: 28 Apr 2022
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Series Title: SpringerBriefs in Computer Science
  • Width: 155 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Privacy Preservation in IoT: Machine Learning Approaches: A Comprehensive Survey and Use Cases(SpringerBriefs in Computer Science)
Springer Verlag, Singapore -
Privacy Preservation in IoT: Machine Learning Approaches: A Comprehensive Survey and Use Cases(SpringerBriefs in Computer Science)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Privacy Preservation in IoT: Machine Learning Approaches: A Comprehensive Survey and Use Cases(SpringerBriefs in Computer Science)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!