Buy Electrically Induced Vortical Flows at Bookstore UAE
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Physics > Classical mechanics > Electrically Induced Vortical Flows: (9 Mechanics of Fluids and Transport Processes)
Electrically Induced Vortical Flows: (9 Mechanics of Fluids and Transport Processes)

Electrically Induced Vortical Flows: (9 Mechanics of Fluids and Transport Processes)


     0     
5
4
3
2
1



Available


X
About the Book

Every scientific subject probably conceals unexplored or little investigated strata, which may show up at the proper time when favourable conditions coincide (practical demands, a circle of scientists prepared to recognize the novelty and capable of giving impetus to the development of a new theory, etc.). Something like this occurred in early seventies for magnetohydrodynamics, which at the time was considered to be a relatively complete branch of hydro- dynamics with no apparent broad, unexplored areas. It was unexpectedly realized that, in addition to the traditional methods of affecting an electrically conducting medium, there is yet another way, one which subsequently lead to a new direction in magnetohydrodynamics. In the Soviet scientific literature this direction has been termed 'electrically induced vortex flows', the essence of which are hydrodynamic effects due to the interaction of an electric current passing through the fluid with its own magnetic field. It cannot be said that this direction was created ex nihilo: individual studies related to the flows driven in a current-carrying medium in the absence of external magnetic fields appeared in the sixties; in the thirties the flows them- selves were known to take place within electrical arcs; and yet the first observa- tions on the behaviour of liquid current-carrying conductors were made at the beginning of this century.

Table of Contents:
1/Basic Properties of Axially Symmetric Motions in Magnetohydrodynamics.- 1.1. Magnetohydrodynamic Equations.- 1.2. Some Facts about Orthogonal Curvilinear Coordinates.- 1.3. Differential Operators in Orthogonal Curvilinear Coordinates.- 1.4. The Most Commonly Used Rotational Coordinate Systems.- 1.5. Axisymmetric Motions.- 1.6. Relation between Stokes Stream Function and Self-Magnetic Field of an Electric Current in Problems with Axial Symmetry.- 1.7. Feasible Schemes for Axially Symmetric Electric Current Distributions.- 1.8. Magnetic Field in Axisymmetric Flow.- 1.9. Electric Field in Axisymmetric Flow.- 1.10. Full Set of Equations for Axisymmetric Motion.- 2/Solutions in Spherical Coordinates.- 2.1. Definition of the Class of Exact Solutions.- 2.2. Low Magnetic Reynolds Number Approximation. Electric Current and External Magnetic Fields.- 2.3. Integral Flow Characteristics and Dimensionless Criteria.- 2.4. Review of the Class of Exact Solutions in Spherical Coordinates.- 2.5. Electrically Induced Vortex Flow in a Cone.- 2.6. Gas Flow in an Electrical Arc.- 2.7. Problems of the Nonlinear Solution.- 2.8. Landau-Squire Flows in the Presence of a Radially Diverging Electric Current.- 2.9. Effect of the Induced Electric Current on the Flow at a Point Current Source.- 2.10. Electrically Induced Flows at Finite Size Electrodes.- 3/Electrically Induced Vortex Flow at a Point Electrode and Azimuthal Rotation.- 3.1. Integral Properties of the Flows Driven by Rotational Electromagnetic Forces.- 3.2. A Model Demonstrating the Effect of Viscosity.- 3.3. Flow at an Immersed Electrode.- 3.4. Asymptotic Solution for High S.- 3.5. Electrically Induced Flow with Differential Rotation.- 3.6. Growth of Azimuthal Disturbance in the Electrically Induced Flow at a Point Electrode.- 3.7. Intensification of Rotation in a Closed Volume.- 3.8. Mechanism of Rotation Intensification in an Axisymmetric Vortex.- 4/Flows with Cylindrical Symmetry.- 4.1. External Electric Current and Magnetic Field in Cylindrical Coordinates.- 4.2. Similarity Solutions.- 4.3. Electrically Induced Flow between Two Parallel Walls.- 4.4. Flow with Line Source in a Circular Cone.- 4.5. Magnetohydrodynamic Model of Tornado.- 4.6. EVF in a Cylindrical Container.- 4.7. Effect of Electric Current Configuration on Flow in a Cylindrical Container.- 5/Periodic Electrically Induced Flows.- 5.1. Periodic Distributions of Current and Magnetic Field in Cylindrical Coordinates.- 5.2. Integral Action of Electromagnetic Force.- 5.3. A Method Used to Construct Linear Solution of Periodic EVF in Tubes.- 5.4. EVF in a Tube with Radial Current Supply.- 5.5. EVF in a Tube with Longitudinal Electric Current.- 5.6. EVF in an Annular Tube.- 5.7. Periodic EVF in a Longitudinal Magnetic Field.- 5.8. Longitudinal Magnetic Field Effect on Integral Features of EVF.- 5.9. Nonlinear Interaction of Periodic EVF with Through-Flow.- 5.10. Electrically Induced Flow in a Loosely Coiled Tube.- 6/Bodies in a Current-Carrying Fluid.- 6.1. Effect of Potential Forces on a Body in a Current-Carrying Fluid.- 6.2. Effect of the Rotational Electromagnetic Forces on Axisymmetric Bodies.- 6.3. Flow at a Stationary Sphere.- 6.4. Drag of a Sphere in the Flow of Current-Carrying Fluid.- 6.5. Flows at Spheroids.- 6.6. Discharge between Electrodes of Hyperboloidal Form.- 6.7. Flow at a Cone with an Electric Current Source in the Apex.- 6.8. Motion of a Sphere with a Current-Source.- 7/Heat and Mass Transfer in Electrically Induced Vortical Flows.- 7.1. Equations of Heat and Mass Transfer, and the Nondimensional Numbers.- 7.2. Mass Transfer from a Stationary Spherical Particle in Current-Carrying Fluid.- 7.3. Mass Transfer from a Translating Spherical Particle in a Current-Carrying Fluid.- 7.4. Mass Transfer from a Stationary Sphere in a Longitudinal Magnetic Field.- 7.5. Heat and Mass Transfer in a Cylindrical Container.- 7.6. Thermal Convection in Electrically Induced Flows.- 8/Experimental Investigations of EVF and Applications.- 8.1. Electroslag Welding.- 8.2. Electroslag Remelting.- 8.3. Electric-Arc Furnaces.- 8.4. Hydrodynamics of Furnaces with Multiple Electrodes.- 8.5. Electrical Jet Thrusters.- 8.6. Induction Channel Furnaces.- 8.7. Electrically Induced Flows in a Flat Layer between Ferromagnetic Masses.- 8.8. Electrolytic Aluminium Production.- References.


Best Sellers


Product Details
  • ISBN-13: 9789401070171
  • Publisher: Springer
  • Publisher Imprint: Springer
  • Height: 235 mm
  • No of Pages: 400
  • Returnable: N
  • Width: 155 mm
  • ISBN-10: 9401070172
  • Publisher Date: 01 Oct 2011
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Series Title: 9 Mechanics of Fluids and Transport Processes


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Electrically Induced Vortical Flows: (9 Mechanics of Fluids and Transport Processes)
Springer -
Electrically Induced Vortical Flows: (9 Mechanics of Fluids and Transport Processes)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Electrically Induced Vortical Flows: (9 Mechanics of Fluids and Transport Processes)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!