Infinite Homotopy Theory
Home > Mathematics and Science Textbooks > Mathematics > Topology > Algebraic topology > Infinite Homotopy Theory: (6 K-Monographs in Mathematics)
Infinite Homotopy Theory: (6 K-Monographs in Mathematics)

Infinite Homotopy Theory: (6 K-Monographs in Mathematics)


     0     
5
4
3
2
1



International Edition


X
About the Book

Compactness in topology and finite generation in algebra are nice properties to start with. However, the study of compact spaces leads naturally to non-compact spaces and infinitely generated chain complexes; a classical example is the theory of covering spaces. In handling non-compact spaces we must take into account the infinity behaviour of such spaces. This necessitates modifying the usual topological and algebraic cate­ gories to obtain "proper" categories in which objects are equipped with a "topologized infinity" and in which morphisms are compatible with the topology at infinity. The origins of proper (topological) category theory go back to 1923, when Kere­ kjart6 [VT] established the classification of non-compact surfaces by adding to orien­ tability and genus a new invariant, consisting of a set of "ideal points" at infinity. Later, Freudenthal [ETR] gave a rigorous treatment of the topology of "ideal points" by introducing the space of "ends" of a non-compact space. In spite of its early ap­ pearance, proper category theory was not recognized as a distinct area of topology until the late 1960's with the work of Siebenmann [OFB], [IS], [DES] on non-compact manifolds.

Table of Contents:
I. Foundations of homotopy theory and proper homotopy theory.- § 1 Compactifications and compact maps.- § 2 Homotopy.- § 3 Categories with a cylinder functor.- § 4 Cofibration categories and homotopy theory in I-categories.- § 5 Tracks and cylindrical homotopy groups.- § 6 Homotopy groups.- § 7 Cofibres.- Appendices.- § 8 Appendix. Compact maps.- § 9 Appendix. The Freudenthal compactification.- II. Trees and spherical objects in the category Topp of compact maps.- § 1 Locally finite trees and Freudenthal ends.- Appendix. Halin’s tree lemma.- § 2 Unions in Topp.- Appendix. The proper Hilton—Milnor theorem.- § 3 Spherical objects and homotopy groups in Topp.- §4 The homotopy category of n-dimensional spherical objects in Topp.- Appendix. Classification of spherical objects under a tree.- III. Tree-like spaces and spherical objects in the category End of ended spaces.- §1 Tree-like spaces in End.- § 2 Unions in End.- § 3 Spherical objects and homotopy groups in End.- §4 The homotopy category of n-dimensional spherical objects in End.- Appendix. Classification of spherical objects under a tree-like space.- § 5 Z-sets and telescopes.- § 6 ARZ-spaces.- IV. CW-complexes.- § 1 Relative CW-complexes in Top.- § 2 Strongly locally finite CW-complexes.- § 3 Relative CW-complexes in Topp.- § 4 Relative CW-complexes in End.- § 5 Normalization of CW-complexes.- § 6 Push outs of CW-complexes.- § 7 The Blakers—Massey theorem.- § 8 The proper Whitehead theorem.- V. Theories and models of theories.- § 1 Theories of cogroups and Van Kampen theorem for proper fundamental groups.- § 2 Additive categories and additivization.- § 3 Rings associated to tree-like spaces.- § 4 Inverse limits of gr(T)-models.- § 5 Kernels in ab(T).- VI. T-controlled homology.-§ 1 R-modules and the reduced projective class group.- § 2 Chain complexes in ringoids and homology.- § 3 Cellular T-controlled homology.- § 4 Coefficients for T-controlled homology and cohomology.- § 5 The Hurewicz theorem in End.- §6 The proper homological Whitehead theorem (the 1-connected case).- § 7 Proper finiteness obstructions (the 1-connected case).- VII. Proper groupoids.- § 1 Filtered discrete objects.- § 2 The fundamental groupoid of ended spaces.- § 3 The proper homotopy category of 1-dimensional reduced relative CW-complexes.- § 4 Free D-groupoids under G.- § 5 The proper fundamental groupoid of a 1-dimensional reduced relative CW-complex.- § 6 Simplicial objects in proper homotopy theory.- VIII. The enveloping ringoid of a proper grou-poid.- § 1 The homotopy category of 1-dimensional spherical objects under T.- § 2 The ringoid S (X, T) associated to a pair (X, T) in End.- § 3 The enveloping ringoid of the proper fundamental group.- § 4 The enveloping ringoid of the proper fundamental groupoid.- IX. T-controlled homology with coefficients.- §1 The T-controlled twisted chain complex of a relative CW-complex (X, T).- § 2 The T-controlled twisted chain complex of a CW-complex X.- § 3 T-controlled cohomology and homology with local coefficients.- § 4 Proper obstruction theory.- § 5 The twisted Hurewicz homomorphism and the twisted ?-sequence in ?End.- § 6 The proper homological Whitehead theorem (the 0-connected case).- § 7 Proper finiteness obstructions (the 0-connected case).- X. Simple homotopy types with ends.- § 1 The torsion group Kl.- § 2 Simple equivalences and proper equivalences.- § 3 The topological Whitehead group.- § 4 The algebraic Whitehead group.- § 5 The proper algebraic Whitehead group.- List of symbols.

Review :
From the reviews: "In this book the authors try to deal with more general spaces in a fundamental way by setting up algebraic topology in an abstract categorical context which encompasses not only the usual category of topological spaces and continuous maps, but also several categories related to proper maps. … all concepts are carefully explained and detailed references for the proofs are given. … a good understanding of the basics of ordinary homotopy theory is all that is needed to enjoy reading this book." (F. Clauwens, Nieuw Archief voor Wiskunde, Vol. 7 (2), 2006)


Best Sellers


Product Details
  • ISBN-13: 9789401064934
  • Publisher: Springer
  • Publisher Imprint: Springer
  • Height: 240 mm
  • No of Pages: 296
  • Returnable: Y
  • Width: 160 mm
  • ISBN-10: 9401064938
  • Publisher Date: 03 Oct 2013
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Series Title: 6 K-Monographs in Mathematics


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Infinite Homotopy Theory: (6 K-Monographs in Mathematics)
Springer -
Infinite Homotopy Theory: (6 K-Monographs in Mathematics)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Infinite Homotopy Theory: (6 K-Monographs in Mathematics)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!