Theory of Stochastic Canonical Equations
Home > Mathematics and Science Textbooks > Mathematics > Probability and statistics > Theory of Stochastic Canonical Equations: Volumes I and II(535 Mathematics and Its Applications)
Theory of Stochastic Canonical Equations: Volumes I and II(535 Mathematics and Its Applications)

Theory of Stochastic Canonical Equations: Volumes I and II(535 Mathematics and Its Applications)


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Theory of Stochastic Canonical Equations collects the major results of thirty years of the author's work in the creation of the theory of stochastic canonical equations. It is the first book to completely explore this theory and to provide the necessary tools for dealing with these equations. Included are limit phenomena of sequences of random matrices and the asymptotic properties of the eigenvalues of such matrices. The book is especially interesting since it gives readers a chance to study proofs written by the mathematician who discovered them. All fifty-nine canonical equations are derived and explored along with their applications in such diverse fields as probability and statistics, economics and finance, statistical physics, quantum mechanics, control theory, cryptography, and communications networks. Some of these equations were first published in Russian in 1988 in the book Spectral Theory of Random Matrices, published by Nauka Science, Moscow. An understanding of the structure of random eigenvalues and eigenvectors is central to random matrices and their applications. Random matrix analysis uses a broad spectrum of other parts of mathematics, linear algebra, geometry, analysis, statistical physics, combinatories, and so forth. In return, random matrix theory is one of the chief tools of modern statistics, to the extent that at times the interface between matrix analysis and statistics is notably blurred. Volume I of Theory of Stochastic Canonical Equations discusses the key canonical equations in advanced random matrix analysis. Volume II turns its attention to a broad discussion of some concrete examples of matrices. It contains in-depth discussion of modern, highly-specialized topics in matrix analysis, such as unitary random matrices and Jacoby random matrices. The book is intended for a variety of readers: students, engineers, statisticians, economists and others.

Table of Contents:
List of basic notations and assumptions. How the stochastic canonical equation was found. 1. Canonical equation K1. 2. Canonical equation K2· Necessary and sufficient modified Lindeberg's condition. The Wigner and Cubic laws. 3. Regularized stochastic canonical equation K3 for symmetric random matrices with infinitely small entries. 4. Stochastic canonical equation K4 for symmetric random matrices with infinitely small entries. Necessary and sufficient conditions for the convergence of normalized spectral functions. 5. Canonical equation K5 for symmetric random matrices with infinitely small entries. 6. Canonical equation K6 for symmetric random matrices with identically distributed entries. 7. Canonical equation K7 for Gram random matrices. 8. Canonical equation K8. 9. Canonical equation K9 for random matrices whose entries have identical variances. 10. Canonical equation K10· Necessary and sufficient modified Lindeberg condition. 11. Canonical equation K11· Limit theorem for normalized spectral functions of empirical covariance matrices under the modified Lindeberg condition. 12. Canonical Equation K12 for random Gram matrices with infinitely small entries. 13. Canonical Equation K13 for random Gram matrices with infinitely small entries. 14. The method of random determinants for estimating the permanents of matrices and the canonical equation K14 for random Gram matrices. 15. Canonical EquationK15 for random Gram matrices with identically distributed entries. 16. Canonical Equation K16 for sample covariance matrices. 17. Canonical Equation K17 for identically distributed independent vector observations and the G2-estimators of the real Stieltjes transforms of the normalized spectral functions of the covariance matrices. 18.Canonical equation K18 for the special structure of vector observations. 19. Canonical equation K19. 20. Canonical equation K20· Strong law for normalized spectral functions of nonselfadjoint random matrices with independent row vectors. Simple rigorous proof of the strong Circular law. 21. Canonical equation K21 for random matrices with independent pairs of entries with zero expectations. Circular and Elliptic laws. 22. Canonical equation K22 for random matrices with independent pairs of entries. 23. Canonical equation K23 for random matrices with independent pairs of entries with different variances and equal covariances. 24. Canonical equation K24 for random G-matrices with infinitesimally small random entries. 25. Canonical equation K25 for random G-matrices. Strong V-law. 26. Class of canonical V-equation K26 for a single matrix and a product of two matrices. The V-density of eigenvalues of random matrices such that the variances of their entries form a doubly stochastic matrix. 27. Canonical equation K27 for normalized spectral functions of random symmetric block matrices.

About the Author :
Vyacheslav L. Girko is Professor of Mathematics in the Department of Applied Statistics at the National University of Kiev and the University of Kiev Mohyla Academy. He is also affiliated with the Institute of Mathematics, Ukrainian Academy of Sciences. His research interests include multivariate statistical analysis, discriminant analysis, experiment planning, identification and control of complex systems, statistical methods in physics, noise filtration, matrix analysis, and stochastic optimization. He has published widely in the areas of multidimensional statistical analysis and theory of random matrices.


Best Sellers


Product Details
  • ISBN-13: 9789401038829
  • Publisher: Springer
  • Publisher Imprint: Springer
  • Height: 235 mm
  • No of Pages: 960
  • Series Title: 535 Mathematics and Its Applications
  • Width: 155 mm
  • ISBN-10: 9401038821
  • Publisher Date: 09 Mar 2012
  • Binding: SA
  • Language: English
  • Returnable: N
  • Sub Title: Volumes I and II


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Theory of Stochastic Canonical Equations: Volumes I and II(535 Mathematics and Its Applications)
Springer -
Theory of Stochastic Canonical Equations: Volumes I and II(535 Mathematics and Its Applications)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Theory of Stochastic Canonical Equations: Volumes I and II(535 Mathematics and Its Applications)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!