Frequency-Shaped and Observer-Based Discrete-time Sliding Mode Control
Home > Science, Technology & Agriculture > Mechanical engineering and materials > Materials science > Frequency-Shaped and Observer-Based Discrete-time Sliding Mode Control: (SpringerBriefs in Applied Sciences and Technology)
Frequency-Shaped and Observer-Based Discrete-time Sliding Mode Control: (SpringerBriefs in Applied Sciences and Technology)

Frequency-Shaped and Observer-Based Discrete-time Sliding Mode Control: (SpringerBriefs in Applied Sciences and Technology)


     0     
5
4
3
2
1



International Edition


About the Book

It is well established that the sliding mode control strategy provides an effective and robust method of controlling the deterministic system due to its well-known invariance property to a class of bounded disturbance and parameter variations. Advances in microcomputer technologies have made digital control increasingly popular among the researchers worldwide. And that led to the study of discrete-time sliding mode control design and its implementation. This brief presents, a method for multi-rate frequency shaped sliding mode controller design based on switching and non-switching type of reaching law. In this approach, the frequency dependent compensator dynamics are introduced through a frequency-shaped sliding surface by assigning frequency dependent weighing matrices in a linear quadratic regulator (LQR) design procedure. In this way, the undesired high frequency dynamics or certain frequency disturbance can be eliminated. The states are implicitly obtained by measuring the output at a faster rate than the control. It is also known that the vibration control of smart structure is a challenging problem as it has several vibratory modes. So, the frequency shaping approach is used to suppress the frequency dynamics excited during sliding mode in smart structure. The frequency content of the optimal sliding mode is shaped by using a frequency dependent compensator, such that a higher gain can be obtained at the resonance frequencies. The brief discusses the design methods of the controllers based on the proposed approach for the vibration suppression of the intelligent structure. The brief also presents a design of discrete-time reduced order observer using the duality to discrete-time sliding surface design. First, the duality between the coefficients of the discrete-time reduced order observer and the sliding surface design is established and then, the design method for the observer using Riccati equation is explained. Using the proposed method, the observer forthe Power System Stabilizer (PSS) for Single Machine Infinite Bus (SMIB) system is designed and the simulation is carried out using the observed states. The discrete-time sliding mode controller based on the proposed reduced order observer design method is also obtained for a laboratory experimental servo system and verified with the experimental results.

Table of Contents:
Introduction.- Preliminaries of Sliding Mode Control.- Multirate Output Feedback Frequency Shaped SMC: A Switching Type Control Law.- Multirate Output Feedback Frequency Shaped SMC : A Non-Switching Type Control Law.- Reduced Order Observer Design using Duality to Sliding Surface Design.

About the Author :
Dr. Axaykumar Mehta Born in Bharu0ch, Gujarat, India in 1975 and got B.E. Electrical (1996), M.Tech (2002) and Ph.D. (2009) degree from Gujarat University Ahmedabad, IIT Kharagpur and IIT Mumbai, respectively. He worked as an Associate Faculty at Indian Institute Technology, Gandhinagar during 2010-2011. He also acted as Professor; Director at Gujarat Power Engineering and Research Institute, Mehsana, Gujarat, India during 2012-2014. Currently, he is an Associate Professor at Institute of Infrastructure Technology Research and Management, Ahmedabad, Gujarat. His research interest is Non-linear Sliding Mode Control and Observer, Sliding Mode Control Application in Electrical Engineering and Networked Control System. He has published 30 research papers in peer reviewed international journals and conferences of repute. He is Senior Member IEEE, Life Member of Institution of Engineers (India), Life Member of Indian Society for Technical Education and Member of Systems Society of India. He is conferred the Best paper award by SSI and Pedagogical Innovation award 2014 by Gujarat Technological University. Prof. Bijnan Bandyopadhyay received his B.E. degree in Electronics and Telecommunication Engineering from the University of Calcutta, Calcutta, India in 1978, and Ph.D. in Electrical Engineering from the Indian Institute of Technology, Delhi, India in 1986. In 1987, he joined the Interdisciplinary Programme in Systems and Control Engineering, Indian Institute of Technology Bombay, India, as a faculty member, where he is currently a Professor. In 1996, he was with the Lehrstuhl fur Elektrische Steuerung und Regelung, Ruhr Universitat Bochum, Bochum, Germany, as an Alexander von Humboldt Fellow. He has been a visiting Professor at Okayama University, Japan, Korea Advance Institute Science and Technology (KAIST) South Korea and Chiba National University in 2007. He visited University of Western Australia, Australia as a Gledden Visiting Senior Fellow in 2007.Professor Bandyopadhyay is recipient of UKIERI (UK India Education and Research Initiative) Major Award in 2007, ‘Distinguished Visiting Fellowship’ award in 2009 and 2012 from "The Royal Academy of Engineering", London. Professor Bandyopadhyay is a Fellow of Indian National Academy of Engineering (INAE), Senior Member of IEEE and a Fellow of IETE (India). He has published 9 books and monographs, 6 book chapters and more than 300 journal articles and conference papers. He has guided 25 Ph.D. theses at IIT Bombay. His research interests include the areas of higher order sliding mode control, multirate output feedback control, discrete-time sliding mode control, large-scale systems, model order reduction, nuclear reactor control and smart structure control. Prof. Bandyopadhyay served as Co-Chairman of the International Organization Committee and as Chairman of the Local Arrangements Committee for the IEEE International Conference in Industrial Technology, held in Goa, India, in Jan. 2000. He also served as one of the General Chairs of IEEE ICIT conference held in Mumbai, India in December 2006. Prof. Bandyopadhyay has served as General Chair for IEEE International Workshop on Variable Structure Systems held in Mumbai in January 2012.


Best Sellers


Product Details
  • ISBN-13: 9788132222378
  • Publisher: Springer, India, Private Ltd
  • Publisher Imprint: Springer, India, Private Ltd
  • Height: 235 mm
  • No of Pages: 95
  • Returnable: Y
  • Width: 155 mm
  • ISBN-10: 8132222377
  • Publisher Date: 21 Jan 2015
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Series Title: SpringerBriefs in Applied Sciences and Technology


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Frequency-Shaped and Observer-Based Discrete-time Sliding Mode Control: (SpringerBriefs in Applied Sciences and Technology)
Springer, India, Private Ltd -
Frequency-Shaped and Observer-Based Discrete-time Sliding Mode Control: (SpringerBriefs in Applied Sciences and Technology)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Frequency-Shaped and Observer-Based Discrete-time Sliding Mode Control: (SpringerBriefs in Applied Sciences and Technology)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!