ODNP enhanced NMR relaxometry and diffusometry
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Mechanical engineering and materials > Mechanical engineering > ODNP enhanced NMR relaxometry and diffusometry: Hardware development and applications to fuel cell materials
ODNP enhanced NMR relaxometry and diffusometry: Hardware development and applications to fuel cell materials

ODNP enhanced NMR relaxometry and diffusometry: Hardware development and applications to fuel cell materials


     0     
5
4
3
2
1



Available


X
About the Book

In nuclear magnetic resonance (NMR) the demand for compact, low-cost instruments that can substitute expensive superconducting magnets is growing. Although compact NMR devices based on permanent magnets that can resolve 1H chemical shift differences are commercially available, the magnetic field strength of these devices is limited, which sets boundaries to the signal intensity and quality. Hyperpolarization techniques to boost the NMR signal beyond ist thermally given polarization are well known and applied on superconducting magnets. Thus, implementing these methods on compact NMR instruments will be the next step of development to gain an increased signal quality and widen the range of applications for those magnets. One part of this thesis deals with the development of compact magnets for an X-Band Overhauser Dynamic Nuclear Polarization (ODNP) setup and the construction of the hyperpolarization hardware itself. Two concepts of small open-access magnets are presented, simulated, and experimentally tested that allow a direct shimming of the magnetic field by displacing magnet blocks without the need of further pole shoes or shim pieces. The superior design is transferred to a bigger magnet, which can fit EPR resonators and is the center piece of the ODNP hardware. For this hardware an ODNP amplification board is constructed and a commercially purchased EPR resonator is modified to include NMR coils. All components are adjusted to each other, the communication between them is established and the basic functionality of the hardware demonstrated. Additionally to the hardware construction, a fast field mapping method is introduced to characterize the detection volume of compact NMR devices. This method facilitates the characterization and hence construction of permanent NMR magnets and saves about one order of magnitude in measurement time compared to the established procedures. Beside the construction of compact hyperpolarization setups, new applications areas for these techniques should be explored. In this context the idea of ODNP enhanced Laplace NMR experiments is explained and experimentally demonstrated by CPMG, inversion recovery, and PFG diffusion experiments on a model sample. Furthermore, these techniques are applied to study the influence of ODNP spin probes on the dynamic properties of Nafion membranes. Since ODNP relies on the presence of paramagnetic spin probes their influence on the material properties must be studied before any conclusion on material properties can be drawn from hyperpolarization experiments. A cornucopia of established and novel methods is applied to dissect Nafion properties in the presence of spin probes ranging from Small Angle X-ray Scattering (SAXS), Thermal Gravimetric Analysis (TGA), conductivity measurements, PFG NMR diffusometry, field cycling NMR relaxometry, ODNP relaxometry to Electron Paramagnetic Resonance (EPR), and new combinations thereof.


Best Sellers


Product Details
  • ISBN-13: 9783958862791
  • Publisher: Verlag G. Mainz
  • Publisher Imprint: Verlag G. Mainz
  • Height: 210 mm
  • No of Pages: 120
  • Weight: 190 gr
  • ISBN-10: 3958862799
  • Publisher Date: 20 Mar 2019
  • Binding: Paperback
  • Language: English
  • Sub Title: Hardware development and applications to fuel cell materials
  • Width: 148 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
ODNP enhanced NMR relaxometry and diffusometry: Hardware development and applications to fuel cell materials
Verlag G. Mainz -
ODNP enhanced NMR relaxometry and diffusometry: Hardware development and applications to fuel cell materials
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

ODNP enhanced NMR relaxometry and diffusometry: Hardware development and applications to fuel cell materials

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!