Buy Single-sided NMR in the context of experimental and numerical investigation of Newtonian and Non-Newtonian fluids flow in porous media
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Medicine & Health Science textbooks > Medical specialties, branches of medicine > Medical imaging > Medical imaging: nuclear magnetic resonance (NMR / MRI) > Single-sided NMR in the context of experimental and numerical investigation of Newtonian and Non-Newtonian fluids flow in porous media
Single-sided NMR in the context of experimental and numerical investigation of Newtonian and Non-Newtonian fluids flow in porous media

Single-sided NMR in the context of experimental and numerical investigation of Newtonian and Non-Newtonian fluids flow in porous media


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

A major application area of Nuclear Magnetic Resonance (NMR) is the study of porous materials which started in the early days of NMR when Torrey investigated the complex diffusion dynamics of fluids inside porous media. Since then, NMR relaxation has been explored extensively in studying porous materials such as cement and subsurface-rock formations. However, fibrous substrates and in particular thin fibrous materials have received much less attention. Such materials are employed in a wide range of products such as fuel-cells, paper, filters, fluid absorbents and barrier materials, textiles, diapers, and pads. In this thesis single-sided NMR has been used to study the interaction of Newtonian and non-Newtonian fluids with the fibrous porous materials. Furthermore, the experimental results are used to validate the numerical models that simulate fluid flow in these materials. In the first step, single-sided NMR with the NMR-MOUSE® is employed for quantification of the fluid amount. Using 2 mM/l of a Gd3+ relaxation agent the repetition time could be shortened to 250 ms, improving the correlation coefficient between liquid amount and signal amplitude from R2 = 0.893 to R2 = 0.982 for different liquid and porous materials. To assess reproducibility and instrument precision, calibration experiments were repeated several times and their variation was investigated. The results showed that the device is highly precise and robust with a standard deviation for liquid quantification of less than 1%. In the second step, the NMR-MOUSE® is used for dynamic measurements of drainage processes through thin porous layers. The experimental results from NMR were used to improve the continuum-scale modeling of liquid flow from the top to the bottom layer. Thin fibrous porous materials are mostly used in stacks of layers, each layer having a defined functionality. Since only a few pores exist across a layer a couple of hundred microns thick, the interface between layers may significantly affect the liquid ingress. The Fourier NMR-MOUSE® device with a low static gradient was used to profile a 2-mm thick slice in one shot. The liquid ingress into the thin fibrous layers and their interfaces was visualized by Fouriertransforming the NMR signal and processing the time-dependent 1D profiles with a newly developed mathematical method. The results show major differences in distributions and flow dynamics for the single and dual layer cases, which reveal the importance of the interface in fluid flow Moreover, a new device called Multivariable NMR Acquisition System (MNAS) has been developed and employed to study the liquid flow inside multi-layered swelling absorbent articles such as diapers. The experimental procedure which consist of a dynamic measurement and profiling measurement, was utilized to investigate the performance of four different absorbent products. The information obtained from these measurements could be used in developing new products. The flow of non-Newtonian liquids inside fibrous porous media was studied numerically as well as experimentally. It was shown that the single-sided NMR is a powerful tool to study the flow and distribution of non-Newtonian liquids in thin fibrous porous media.


Best Sellers


Product Details
  • ISBN-13: 9783958862753
  • Publisher: Verlag G. Mainz
  • Publisher Imprint: Verlag G. Mainz
  • Height: 210 mm
  • No of Pages: 122
  • Width: 148 mm
  • ISBN-10: 3958862756
  • Publisher Date: 28 Jun 2019
  • Binding: Paperback
  • Language: English
  • Weight: 185 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Single-sided NMR in the context of experimental and numerical investigation of Newtonian and Non-Newtonian fluids flow in porous media
Verlag G. Mainz -
Single-sided NMR in the context of experimental and numerical investigation of Newtonian and Non-Newtonian fluids flow in porous media
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Single-sided NMR in the context of experimental and numerical investigation of Newtonian and Non-Newtonian fluids flow in porous media

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!