Ginzburg-Landau Phase Transition Theory and Superconductivity
Home > Mathematics and Science Textbooks > Mathematics > Calculus and mathematical analysis > Numerical analysis > Ginzburg-Landau Phase Transition Theory and Superconductivity: (134 International Series of Numerical Mathematics)
Ginzburg-Landau Phase Transition Theory and Superconductivity: (134 International Series of Numerical Mathematics)

Ginzburg-Landau Phase Transition Theory and Superconductivity: (134 International Series of Numerical Mathematics)


     0     
5
4
3
2
1



International Edition


X
About the Book

The theory of complex Ginzburg-Landau type phase transition and its applica­ tions to superconductivity and superfluidity has been a topic of great interest to theoretical physicists and has been continuously and persistently studied since the 1950s. Today, there is an abundance of mathematical results spread over numer­ ous scientific journals. However, before 1992, most of the studies concentrated on formal asymptotics or linear analysis. Only isolated results by Berger, Jaffe and Taubes and some of their colleagues touched the nonlinear aspects in great detail. In 1991, a physics seminar given by Ed Copeland at Sussex University inspired Q. Tang, the co-author of this monograph, to study the subject. Independently in Munich, K.-H. Hoffmann and his collaborators Z. Chen and J. Liang started to work on the topic at the same time. Soon it became clear that at that time, groups of mathematicians at Oxford and Virginia Tech had already studied the subject for a couple of years. They inspired experts in interface phase transition problems and their combined effort established a rigorous mathematical framework for the Ginzburg-Landau system. At the beginning Q. Tang collaborated with C.M. Elliott and H. Matano.

Table of Contents:
1 Introduction.- 1.1 Brief history.- 1.2 The G-L phenomenological theory.- 1.3 Some considerations arising from scaling.- 1.4 The evolutionary G-L system – 2-d case.- 1.5 Exterior evolutionary Maxwell system.- 1.6 Exterior steady-state Maxwell system.- 1.7 Surface energy, superconductor classification.- 1.8 Difference between 2-d and 3-d models.- 1.9 Bibliographical remarks.- 2 Mathematical Foundation.- 2.1 Co-dimension one phase transition problems.- 2.2 Co-dimension two phase transition problems.- 2.3 Mathematical description of vortices in ?2.- 2.4 Asymptotic methods for describing vortices in ?2.- 2.5 Asymptotic methods for describing vortices in ?3.- 2.6 Bibliographical remarks.- 3 Asymptotics Involving Magnetic Potential.- 3.1 Basic facts concerning fluid vortices.- 3.2 Asymptotic analysis.- 3.3 Asymptotic analysis of densely packed vortices.- 3.4 Bibliographical remarks.- 4 Steady State Solutions.- 4.1 Existence of steady state solutions.- 4.2 Stability and mapping properties of solutions.- 4.3 Co-dimension two vortex domain.- 4.4 Breakdown of superconductivity.- 4.5 A linearized problem.- 4.6 Bibliographical remarks.- 5 Evolutionary Solutions.- 5.1 2-d solutions with given external field.- 5.2 Existence of 3-d evolutionary solutions.- 5.3 The existence of an ?-limit set as t ? ?.- 5.4 An abstract theorem on global attractors.- 5.5 Global atractor for the G-L sstem.- 5.6 Physical bounds on the global attractor.- 5.7 The uniqueness of the long time limit of the evolutionary G-L so-lutions.- 5.8 Bibliographical remarks.- 6 Complex G-L Type Phase Transition Theory.- 6.1 Existence and basic properties of solutions.- 6.2 BBH type upper bound for energy of minimizers.- 6.3 Global estimates.- 6.4 Local estimates.- 6.5 The behaviour of solutions nearvortices.- 6.6 Global ?-independent estimates.- 6.7 Convergence of the solutions as ? ? 0.- 6.8 Main results on the limit functions.- 6.9 Renormalized energies.- 6.10 Bibliographical remarks.- 7 The Slow Motion of Vortices.- 7.1 Introduction.- 7.2 Preliminaries.- 7.3 Estimates from below for the mobilities.- 7.4 Estimates from above for the mobilities.- 7.5 Bibliographical remarks.- 8 Thin Plate/Film G-L Models.- 8.1 The outside Maxwell system – steady state case.- 8.2 The outside field is given – evolutionary case.- 8.3 The outside field is given – formal analysis.- 8.4 Bibliographical remarks.- 9 Pinning Theory.- 9.1 Local Pohozaev-type identity.- 9.2 Estimate the energy of minimizers.- 9.3 Local estimates.- 9.4 Global Estimates.- 9.5 Convergence of solutions and the term $$ \frac{1} {{\varepsilon ^2 }}\int_\Omega {(\left| {\psi _\varepsilon } \right|^2 - 1)^2 } $$.- 9.6 Properties of ?*, A*.- 9.7 Renormalized energy.- 9.8 Pinning of vortices in other circumstances.- 9.9 Bibliographical remarks.- 10 Numerical Analysis.- 10.1 Introduction.- 10.2 Discretization.- 10.3 Stability estimates.- 10.4 Error estimates.- 10.5 A numerical example.- 10.6 Discretization using variable step length.- 10.7 A dual problem.- 10.8 A posteriori error analysis.- 10.9 Numerical implementation.- 10.10 Bibliographical remarks.- References.


Best Sellers


Product Details
  • ISBN-13: 9783764364861
  • Publisher: Birkhauser Verlag AG
  • Publisher Imprint: Birkhauser Verlag AG
  • Height: 235 mm
  • No of Pages: 384
  • Returnable: N
  • Width: 155 mm
  • ISBN-10: 3764364866
  • Publisher Date: 01 Dec 2000
  • Binding: Hardback
  • Language: English
  • Returnable: Y
  • Series Title: 134 International Series of Numerical Mathematics


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Ginzburg-Landau Phase Transition Theory and Superconductivity: (134 International Series of Numerical Mathematics)
Birkhauser Verlag AG -
Ginzburg-Landau Phase Transition Theory and Superconductivity: (134 International Series of Numerical Mathematics)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Ginzburg-Landau Phase Transition Theory and Superconductivity: (134 International Series of Numerical Mathematics)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!