Web Data Mining
Home > Computing and Information Technology > Databases > Information retrieval > Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data(Data-Centric Systems and Applications)
Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data(Data-Centric Systems and Applications)

Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data(Data-Centric Systems and Applications)


     0     
5
4
3
2
1



Available


X
About the Book

Liu has written a comprehensive text on Web mining, which consists of two parts. The first part covers the data mining and machine learning foundations, where all the essential concepts and algorithms of data mining and machine learning are presented. The second part covers the key topics of Web mining, where Web crawling, search, social network analysis, structured data extraction, information integration, opinion mining and sentiment analysis, Web usage mining, query log mining, computational advertising, and recommender systems are all treated both in breadth and in depth. His book thus brings all the related concepts and algorithms together to form an authoritative and coherent text.  The book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners interested in Web mining and data mining both as a learning text and as a reference book. Professors can readily use it for classes on data mining, Web mining, and text mining. Additional teaching materials such as lecture slides, datasets, and implemented algorithms are available online.

Table of Contents:
1. Introduction.- Part I: Data Mining Foundations.- 2. Association Rules and Sequential Patterns.- 3. Supervised Learning.- 4. Unsupervised Learning.- 5. Partially Supervised Learning.- Part II: Web Mining.- 6. Information Retrieval and Web Search.- 7. Social Network Analysis.- 8. Web Crawling.- 9. Structured Data Extraction: Wrapper Generation.- 10. Information Integration.- 11. Opinion Mining and Sentiment Analysis.- 12. Web Usage Mining.

About the Author :
Bing Liu is a professor of Computer Science at the University of Illinois at Chicago (UIC). He received his PhD in Artificial Intelligence from the University of Edinburgh. Before joining UIC, he was with the National University of Singapore. His current research interests include opinion mining and sentiment analysis, text and Web mining, data mining, and machine learning. He has published extensively in top journals and conferences in these fields. Several of his publications are considered seminal papers of the fields and are highly cited. He has also given more than 30 keynote and invited talks in academia and in industry. On professional services, Liu has served as associate editors of IEEE Transactions on Knowledge and Data Engineering (TKDE), Journal of Data Mining and Knowledge Discovery (DMKD), and SIGKDD Explorations, and is on the editorial boards of several other journals. He has also served as program chairs of IEEE International Conference on Data Mining (ICDM-2010), ACM Conference on Web Search and Data Mining (WSDM-2010), ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-2008), SIAM Conference on Data Mining (SDM-2007), ACM Conference on Information and Knowledge Management (CIKM-2006), and Pacific Asia Conference on Data Mining (PAKDD-2002). Additionally, Liu has served extensively as area chairs and program committee members of leading conferences on data mining, Web mining, natural language processing, and machine learning. More information about him can be found from http://www.cs.uic.edu/~liub.

Review :
From the reviews: "This is a textbook about data mining and its application to the Web. […] Liu succeeds in helping readers appreciate the key role that data mining and machine learning play in Web applications. […] It also motivates the student by adding immediacy and relevance to the concepts and algorithms described. I liked the way the concepts are introduced in a stepwise manner. […] I also appreciated the bibliographical notes at the end of each chapter." ACM Computing Reviews, W. Hu, , January 2009 From the reviews of the second edition: “Liu (Univ. of Illinois, Chicago) discusses all three types of Web mining--structure, content, and usage--in the technology’s efforts to glean information from hyperlinks, Web page content, and usage logs. […] Practical examples complement the discussions throughout the text, and each chapter includes useful ‘Bibliographic Notes’ and an extensive bibliography. […] Liu states that his intended audience includes bothundergraduate and graduate students, but notes that researchers and Web programmers could benefit from this text as well. Summing Up: Recommended. Upper-division undergraduates through professionals.” J. Johnson, Choice, Vol. 49 (5), January 2012 "[...] Liu's book provides a comprehensive, self-contained introduction to the major data mining techniques and their use in Web data mining. [...] Professionals and researchers alike will find this excellent book handy as a reference. Its extensive lists of references at the end of each chapter provide hundreds of pointers for further reading. As a textbook, it is also suitable for advanced undergraduate and graduate courses on Web mining; it is highly selfcontained and includes many easy-to-understand examples that will help readers grasp the key ideas behind current Web data mining techniques." ACM Computing Reviews, Fernando Berzal, February 2012


Best Sellers


Product Details
  • ISBN-13: 9783642268915
  • Publisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
  • Publisher Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Edition: Revised edition
  • Language: English
  • Returnable: Y
  • Sub Title: Exploring Hyperlinks, Contents, and Usage Data
  • ISBN-10: 3642268919
  • Publisher Date: 03 Aug 2013
  • Binding: Paperback
  • Height: 235 mm
  • No of Pages: 624
  • Series Title: Data-Centric Systems and Applications
  • Width: 155 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data(Data-Centric Systems and Applications)
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG -
Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data(Data-Centric Systems and Applications)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data(Data-Centric Systems and Applications)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!