Diffusion Processes and their Sample Paths
Home > Mathematics and Science Textbooks > Mathematics > Applied mathematics > Stochastics > Diffusion Processes and their Sample Paths: (Classics in Mathematics)
Diffusion Processes and their Sample Paths: (Classics in Mathematics)

Diffusion Processes and their Sample Paths: (Classics in Mathematics)


     0     
5
4
3
2
1



International Edition


X
About the Book

Since its first publication in 1965 in the series Grundlehren der mathematischen Wissenschaften this book has had a profound and enduring influence on research into the stochastic processes associated with diffusion phenomena. Generations of mathematicians have appreciated the clarity of the descriptions given of one- or more- dimensional diffusion processes and the mathematical insight provided into Brownian motion. Now, with its republication in the Classics in Mathematics it is hoped that a new generation will be able to enjoy the classic text of Itô and McKean.

Table of Contents:
Prerequisites.- 1. The standard BRownian motion.- 1.1. The standard random walk.- 1.2. Passage times for the standard random walk.- 1.3. Hin?in’s proof of the de Moivre-laplace limit theorem.- 1.4. The standard Brownian motion.- 1.5. P. Lévy’s construction.- 1.6. Strict Markov character.- 1.7. Passage times for the standard Brownian motion.- 1.8. Kolmogorov’s test and the law of the iterated logarithm.- 1.9. P. Lévy’s Hölder condition.- 1.10. Approximating the Brownian motion by a random walk.- 2. Brownian local times.- 2.1. The reflecting Brownian motion.- 2.2. P. Lévy’s local time.- 2.3. Elastic Brownian motion.- 2.4. t+ and down-crossings.- 2.5. T+ as Hausdorff-Besicovitch 1/2-dimensional measure.- 2.6. Kac’s formula for Brownian functionals.- 2.7. Bessel processes.- 2.8. Standard Brownian local time.- 2.9. BrowNian excursions.- 2.10. Application of the Bessel process to Brownian excursions.- 2.11. A time substitution.- 3. The general 1-dimensional diffusion.- 3.1. Definition.- 3.2.Markov times.- 3.3. Matching numbers.- 3.4. Singular points.- 3.5. Decomposing the general diffusion into simple pieces.- 3.6. Green operators and the space D.- 3.7. Generators.- 3.8. Generators continued.- 3.9. Stopped diffusion.- 4. Generators.- 4.1. A general view.- 4.2. G as local differential operator: conservative non-singular case.- 4.3. G as local differential operator: general non-singular case.- 4.4. A second proof.- 4.5. G at an isolated singular point.- 4.6. Solving G•u = ? u.- 4.7. G as global differential operator: non-singular case.- 4.8. G on the shunts.- 4.9. G as global differential operator: singular case.- 4.10. Passage times.- 4.11. Eigen-differential expansions for Green functions and transition densities.- 4.12. Kolmogorov’s test.- 5. Time changes and killing.- 5.1. Construction of sample paths: a general view.- 5.2. Time changes: Q = R1.- 5.3. Time changes: Q = [0, + ?).- 5.4. Local times.- 5.5. Subordination and chain rule.- 5.6. Killing times.- 5.7. Feller’sBrownian motions.- 5.8. Ikeda’s example.- 5.9. Time substitutions must come from local time integrals.- 5.10. Shunts.- 5.11. Shunts with killing.- 5.12. Creation of mass.- 5.13. A parabolic equation.- 5.14. Explosions.- 5.15. A non-linear parabolic equation.- 6. Local and inverse local times.- 6.1. Local and inverse local times.- 6.2. Lévy measures.- 6.3. t and the intervals of [0, + ?) - ?.- 6.4. A counter example: t and the intervals of [0, + ?) - ?.- 6.5a t and downcrossings.- 6.5b t as Hausdorff measure.- 6.5c t as diffusion.- 6.5d Excursions.- 6.6. Dimension numbers.- 6.7. Comparison tests.- 6.8. An individual ergodic theorem.- 7. Brownian motion in several dimensions.- 7.1. Diffusion in several dimensions.- 7.2. The standard Brownian motion in several dimensions.- 7.3. Wandering out to ?.- 7.4. Greenian domains and Green functions.- 7.5. Excessive functions.- 7.6. Application to the spectrum of ?/2.- 7.7. Potentials and hitting probabilities.- 7.8. Newtonian capacities.- 7.9. Gauss’s quadratic form.- 7.10. Wiener’s test.- 7.11. Applications of Wiener’s test.- 7.12. Dirichlet problem.- 7.13. Neumann problem.- 7.14. Space-time Brownian motion.- 7.15. Spherical Brownian motion and skew products.- 7.16. Spinning.- 7.17. An individual ergodic theorem for the standard 2-dimensional BROWNian motion.- 7.18. Covering Brownian motions.- 7.19. Diffusions with Brownian hitting probabilities.- 7.20. Right-continuous paths.- 7.21. Riesz potentials.- 8. A general view of diffusion in several dimensions.- 8.1. Similar diffusions.- 8.2. G as differential operator.- 8.3. Time substitutions.- 8.4. Potentials.- 8.5. Boundaries.- 8.6. Elliptic operators.- 8.7. Feller’s little boundary and tail algebras.- List of notations.

About the Author :
Biography of Kiyosi Itô Kiyosi Itô was born on September 7, 1915, in Kuwana, Japan. After his undergraduate and doctoral studies at Tokyo University, he was associate professor at Nagoya University before joining the faculty of Kyoto University in 1952. He has remained there ever since and is now Professor Emeritus, but has also spent several years at each of Stanford, Aarhus and Cornell Universities and the University of Minnesota. Itô's fundamental contributions to probability theory, especially the creation of stochastic differential and integral calculus and of excursion theory, form a cornerstone of this field. They have led to a profound understanding of the infinitesimal development of Markovian sample paths, and also of applied problems and phenomena associated with the planning, control and optimization of engineering and other random systems. Professor Itô has been the inspirer and teacher of an entire generation of Japanese probabilists. Biography of Henry McKean Henry McKean was born on December 14, 1930, in Wenham, Massachusetts. He studied mathematics at Dartmouth College, Cambridge University, and Princeton University; he received his degree from the last in 1955. He has held professional positions at Kyoto University, MIT, Rockefeller University, Weizmann Institute, Balliol College, Oxford, and the Courant Institute of Mathematical Sciences (1969 to present).  His main interests are probability, Hamiltonian mechanics, complex function theory, and nonlinear partial differential equations.

Review :
"The systematic character of the exposision, which makes from the widely ramified subject matter of the extensive literature a clear, masterly arranged whole, is a particularly valuable feature of this monograph." (Publicationes Mathematicae)


Best Sellers


Product Details
  • ISBN-13: 9783540606291
  • Publisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
  • Publisher Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Height: 235 mm
  • No of Pages: 323
  • Returnable: Y
  • Width: 155 mm
  • ISBN-10: 3540606297
  • Publisher Date: 05 Jan 1996
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Series Title: Classics in Mathematics


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Diffusion Processes and their Sample Paths: (Classics in Mathematics)
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG -
Diffusion Processes and their Sample Paths: (Classics in Mathematics)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Diffusion Processes and their Sample Paths: (Classics in Mathematics)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!