Buy Optical Characterization of Epitaxial Semiconductor Layers
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Physics > Materials / States of matter > Condensed matter physics > Optical Characterization of Epitaxial Semiconductor Layers
23%
Optical Characterization of Epitaxial Semiconductor Layers

Optical Characterization of Epitaxial Semiconductor Layers


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

The last decade has witnessed an explosive development in the growth of epitaxial layers and structures partially with atomic scale dimensions. This progress has created new demands for the characterization of those structures. Various methods have been refined and new ones were developed with the main emphasis on non-destructive in-situ characterization. Among those, methods which rely on the interaction of electromagnetic radiation with matter are particularly valuable. In this book standard methods such as far-infrared spectroscopy, ellipsometry, Raman scattering and high-resolution X-ray diffraction are presented, as well as new advanced techniques which provide the potential for better in-situ characterization of epitaxial structures.

Table of Contents:
1 Introduction.- 2 Analysis of Epitaxial Growth.- 2.1 Vapour Phase Epitaxy: Basics.- 2.2 Gas Phase Diagnostics: Transport.- 2.2.1 Theoretical Considerations.- 2.2.2 Experimental Determination of v and T.- 2.2.2.1 Measurement of Velocities.- 2.2.2.2 Measurement of Temperature.- 2.3 Gas Phase Diagnostics: Reaction Kinetics.- 2.3.1 Optical Techniques.- 2.3.1.1 Absorption Spectroscopy.- 2.3.1.2 Laser Induced Fluorescence.- 2.3.1.3 Spontaneous Raman Scattering.- 2.3.1.4 Coherent Anti-Stokes Raman Scattering.- 2.3.1.5 Other Methods.- 2.3.2 Experimental Results.- 2.3.2.1 Thermal Decomposition of Precursors.- 2.3.2.2 Decomposition Products.- 2.4 Surface Diagnostics.- 2.4.1 Reflectance Anisotropy Spectroscopy (RAS).- 2.4.1.1 Surfaces Under Pregrowth Conditions.- 2.4.1.2 Surfaces During Growth.- 2.4.2 Surface Photo Absorption (SPA).- 2.4.3 Infrared Reflection Absorption Spectroscopy (IRRAS).- 2.4.4 Second Harmonic Generation (SHG).- 2.4.5 Laser Light Scattering (LLS).- 2.5 Conclusions.- 3 Spectroscopic Ellipsometry.- 3.1 Principle of Measurement.- 3.1.1 Null-Ellipsometry.- 3.1.2 Photometric Ellipsometers.- 3.1.3 Description of Light Polarisation.- 3.1.3.1 The Jones Formalism.- 3.1.3.2 Stokes Vectors and Mueller Matrices.- 3.1.4 Rotating Analyser Ellipsometer in the Jones Formalism.- 3.1.5 The Effective Dielectric Function .- 3.2 Experimental Details.- 3.2.1 Rotating Analyser Ellipsometer.- 3.2.2 Photoelastic Modulator Ellipsometer.- 3.2.3 Polarisers.- 3.2.4 Calibration Procedures.- 3.2.5 Experimental Limits.- 3.2.5.1 Angle of Incidence.- 3.2.5.2 Influence of the Windows.- 3.2.6 Trends and New Developments.- 3.3 Interpretation of the Effective Dielectric Function.- 3.3.1 Examples of Dielectric Functions.- 3.3.2 Lineshape Analysis of Optical Gaps.- 3.3.3 Direct Inspection of .- 3.3.4 Single Layers on a Substrate.- 3.3.4.1 The 3-Phase Model.- 3.3.4.2 Determination of Layer Properties.- 3.3.4.3 Ultrathin Layers.- 3.3.5 Inhomogeneous Layers.- 3.4 Characteristic Experimental Examples.- 3.4.1 Interband Critical Points.- 3.4.1.1 Influence of Temperature.- 3.4.1.2 Influence of Defects: Si Implanted GaAs.- 3.4.1.3 Oxide Overlayers.- 3.4.1.4 Size Effects: Microcrystalline Si.- 3.4.2 Semiconductor Heterostructures.- 3.4.2.1 AlGaAs, GaAsP.- 3.4.2.2 InP on InGaAs.- 3.4.2.3 CdS on InP.- 3.4.3 Strained Layers of InGaAs.- 3.4.4 Inhomogeneous Systems: Porous Silicon Layers.- 3.4.5 In-Situ Studies.- 3.4.5.1 Study of GaAs/AlxGa1-xAs Interfaces.- 3.4.5.2 Control of Composition.- 3.4.5.3 Arsenic Layers on Silicon.- 3.4.6 Multilayer Analysis.- 3.5 Sample Related Problems.- 3.5.1 Sample Preparation.- 3.5.2 Multilayer Structures.- 3.5.3 Gradually Varying Composition.- 3.5.4 Anisotropies.- 3.5.5 Quantification of Defects and Strain.- 3.5.6 Depolarisation.- 3.6 Summary.- 4 Raman Spectroscopy.- 4.1 Theory of Raman Spectroscopy.- 4.1.1 Principles of Raman Spectroscopy.- 4.1.2 Electron-Phonon Interaction.- 4.1.3 Resonance Effects.- 4.1.4 Selection Rules.- 4.2 Experimental Setup for Raman Scattering.- 4.2.1 Light Source.- 4.2.2 Raman Spectrometer.- 4.2.3 Multichannel Detector.- 4.2.4 Micro-Raman Spectroscopy.- 4.2.5 In-Situ Experiments.- 4.3 Analysis of Lattice Dynamical Properties.- 4.3.1 Crystalline Order.- 4.3.1.1 Vibrational Modes of Monolayers.- 4.3.1.2 Structure of Thin Overlayers.- 4.3.2 Strain.- 4.3.3 Orientation.- 4.3.4 Composition and Ordering of Mixed Compounds.- 4.3.5 Detection of Reacted Phases.- 4.3.6 Monitoring of Growth.- 4.3.7 Low-Dimensional Effects.- 4.3.7.1 Folded Acoustical Phonons.- 4.3.7.2 Confined Optical Phonons.- 4.3.7.3 Interface Phonons.- 4.4 Analysis of Electronic Properties.- 4.4.1 Electronic Band Structure.- 4.4.2 Impurities.- 4.4.3 Free Carriers.- 4.4.4 Low Dimensional Effects.- 4.5 Band Bending at Interfaces.- 4.5.1 Band Bending Determination by Plasmon-LO-Phonon Modes.- 4.5.2 Band Bending Determination by Electric-Field Induced Raman Scattering.- 4.6 Summary.- 5 Far-Infrared Spectroscopy.- 5.1 Theoretical Foundations.- 5.1.1 Maxwell'1 Introduction.- 2 Analysis of Epitaxial Growth.- 2.1 Vapour Phase Epitaxy: Basics.- 2.2 Gas Phase Diagnostics: Transport.- 2.2.1 Theoretical Considerations.- 2.2.2 Experimental Determination of v and T.- 2.2.2.1 Measurement of Velocities.- 2.2.2.2 Measurement of Temperature.- 2.3 Gas Phase Diagnostics: Reaction Kinetics.- 2.3.1 Optical Techniques.- 2.3.1.1 Absorption Spectroscopy.- 2.3.1.2 Laser Induced Fluorescence.- 2.3.1.3 Spontaneous Raman Scattering.- 2.3.1.4 Coherent Anti-Stokes Raman Scattering.- 2.3.1.5 Other Methods.- 2.3.2 Experimental Results.- 2.3.2.1 Thermal Decomposition of Precursors.- 2.3.2.2 Decomposition Products.- 2.4 Surface Diagnostics.- 2.4.1 Reflectance Anisotropy Spectroscopy (RAS).- 2.4.1.1 Surfaces Under Pregrowth Conditions.- 2.4.1.2 Surfaces During Growth.- 2.4.2 Surface Photo Absorption (SPA).- 2.4.3 Infrared Reflection Absorption Spectroscopy (IRRAS).- 2.4.4 Second Harmonic Generation (SHG).- 2.4.5 Laser Light Scattering (LLS).- 2.5 Conclusions.- 3 Spectroscopic Ellipsometry.- 3.1 Principle of Measurement.- 3.1.1 Null-Ellipsometry.- 3.1.2 Photometric Ellipsometers.- 3.1.3 Description of Light Polarisation.- 3.1.3.1 The Jones Formalism.- 3.1.3.2 Stokes Vectors and Mueller Matrices.- 3.1.4 Rotating Analyser Ellipsometer in the Jones Formalism.- 3.1.5 The Effective Dielectric Function .- 3.2 Experimental Details.- 3.2.1 Rotating Analyser Ellipsometer.- 3.2.2 Photoelastic Modulator Ellipsometer.- 3.2.3 Polarisers.- 3.2.4 Calibration Procedures.- 3.2.5 Experimental Limits.- 3.2.5.1 Angle of Incidence.- 3.2.5.2 Influence of the Windows.- 3.2.6 Trends and New Developments.- 3.3 Interpretation of the Effective Dielectric Function.- 3.3.1 Examples of Dielectric Functions.- 3.3.2 Lineshape Analysis of Optical Gaps.- 3.3.3 Direct Inspection of .- 3.3.4 Single Layers on a Substrate.- 3.3.4.1 The 3-Phase Model.- 3.3.4.2 Determination of Layer Properties.- 3.3.4.3 Ultrathin Layers.- 3.3.5 Inhomogeneous Layers.- 3.4 Characteristic Experimental Examples.- 3.4.1 Interband Critical Points.- 3.4.1.1 Influence of Temperature.- 3.4.1.2 Influence of Defects: Si Implanted GaAs.- 3.4.1.3 Oxide Overlayers.- 3.4.1.4 Size Effects: Microcrystalline Si.- 3.4.2 Semiconductor Heterostructures.- 3.4.2.1 AlGaAs, GaAsP.- 3.4.2.2 InP on InGaAs.- 3.4.2.3 CdS on InP.- 3.4.3 Strained Layers of InGaAs.- 3.4.4 Inhomogeneous Systems: Porous Silicon Layers.- 3.4.5 In-Situ Studies.- 3.4.5.1 Study of GaAs/AlxGa1-xAs Interfaces.- 3.4.5.2 Control of Composition.- 3.4.5.3 Arsenic Layers on Silicon.- 3.4.6 Multilayer Analysis.- 3.5 Sample Related Problems.- 3.5.1 Sample Preparation.- 3.5.2 Multilayer Structures.- 3.5.3 Gradually Varying Composition.- 3.5.4 Anisotropies.- 3.5.5 Quantification of Defects and Strain.- 3.5.6 Depolarisation.- 3.6 Summary.- 4 Raman Spectroscopy.- 4.1 Theory of Raman Spectroscopy.- 4.1.1 Principles of Raman Spectroscopy.- 4.1.2 Electron-Phonon Interaction.- 4.1.3 Resonance Effects.- 4.1.4 Selection Rules.- 4.2 Experimental Setup for Raman Scattering.- 4.2.1 Light Source.- 4.2.2 Raman Spectrometer.- 4.2.3 Multichannel Detector.- 4.2.4 Micro-Raman Spectroscopy.- 4.2.5 In-Situ Experiments.- 4.3 Analysis of Lattice Dynamical Properties.- 4.3.1 Crystalline Order.- 4.3.1.1 Vibrational Modes of Monolayers.- 4.3.1.2 Structure of Thin Overlayers.- 4.3.2 Strain.- 4.3.3 Orientation.- 4.3.4 Composition and Ordering of Mixed Compounds.- 4.3.5 Detection of Reacted Phases.- 4.3.6 Monitoring of Growth.- 4.3.7 Low-Dimensional Effects.- 4.3.7.1 Folded Acoustical Phonons.- 4.3.7.2 Confined Optical Phonons.- 4.3.7.3 Interface Phonons.- 4.4 Analysis of Electronic Properties.- 4.4.1 Electronic Band Structure.- 4.4.2 Impurities.- 4.4.3 Free Carriers.- 4.4.4 Low Dimensional Effects.- 4.5 Band Bending at Interfaces.- 4.5.1 Band Bending Determination by Plasmon-LO-Phonon Modes.- 4.5.2 Band Bending Determination by Electric-Field Induced Raman Scattering.- 4.6 Summary.- 5 Far-Infrared Spectroscopy.- 5.1 Theoretical Foundations.- 5.1.1 Maxwell's Equations.- 5.1.2 Constitutive Equations and Dispersion Relations.- 5.1.3 Plane Waves in an Isotropic and Homogeneous Medium.- 5.1.4 The Energy Balance.- 5.1.5 Boundary Conditions.- 5.1.6 Coherent and Incoherent Reflection and Transmission of Layered Structures.- 5.1.7 The Dielectric Function ?(?).- 5.1.7.1 The Susceptibility ?PM of Lattice Vibrations.- 5.1.7.2 The Susceptibility ?FC(?) of Free Carriers.- 5.1.8 The Berreman Effect.- 5.1.8.1 The Free Standing Film (?s = 1).- 5.1.8.2 Metal Substrate (??s? ?1).- 5.1.9 Surface Waves.- 5.1.10 Interpretation of Measured Spectra.- 5.2 Fourier Transform Spectroscopy.- 5.2.1 Principle.- 5.2.2 Instrumentation.- 5.3 Determination of Layer Thicknesses.- 5.3.1 Simple Evaluation of Fabry-Perot Interferences.- 5.3.2 Thickness Determination by Fourier Transforms.- 5.3.3 Direct Interferogram Analysis.- 5.3.4 Full Numerical Simulation of Reflectance Spectra.- 5.4 Determination of Carrier Concentrations.- 5.4.1 Semi-Infinite Samples.- 5.4.2 Multilayers.- 5.4.3 Carrier Concentration Profiles.- 5.4.3.1 A Fast Evaluation Scheme for Diffusion Profiles.- 5.5 Confined Electron Systems.- 5.5.1 Properties of Confined Electrons.- 5.5.2 Spectroscopic Techniques.- 5.5.3 Results.- 5.6 Determination of Impurity Concentrations.- 5.6.1 Experimental.- 5.6.2 Impurities in Substrates.- 5.6.2.1 Substitutional Carbon in Silicon.- 5.6.2.2 Interstitial Oxygen in Silicon.- 5.6.2.3 Oxygen Precipitates.- 5.6.3 Impurities in Thin Layers.- 5.7 Shallow Donors and Acceptors.- 5.7.1 Donors and Acceptors in Bulk Materials.- 5.7.2 Donors and Acceptors in Quantum Wells.- 5.8 IR Characterisation of Porous Silicon Layers.- 5.8.1 Effective Medium Theories.- 5.8.2 Examples.- 5.9 Summary.- 6 High Resolution X-Ray Diffraction.- 6.1 Principal Scattering Geometries.- 6.1.1 ? - 2?9-Scan and ?;-Scan (Rocking-curve).- 6.1.2 Double-Crystal Diffraction.- 6.1.3 The 4+1 Crystal Diffractometer.- 6.1.4 Triple-Axis Spectrometer.- 6.1.5 Renninger Scans.- 6.1.6 High-Resolution Multiple-Crystal Multiple-Reflection Diffractometer (HRMCMRD).- 6.2 Kinematical and Dynamical Theory.- 6.3 Thickness Dependence of Bragg Reflections.- 6.4 Strain Phenomena.- 6.4.1 Strains in Epitaxial Layers.- 6.4.2 Partial Relaxation of Strain.- 6.5 Rocking-Curves from Heterostructures.- 6.5.1 Single Heterostructures.- 6.5.2 Composition Gradients.- 6.5.3 Characterisation of Epitaxial Layers Grown Tilted Relative to the Substrates.- 6.6 Multilayer Structures.- 6.6.1 Superlattices.- 6.6.2 Ewald Sphere Construction of SL-Diffraction Diagrams.- 6.6.3 Interpretation of the Fine Structure in X-Ray Diffraction Profiles of SL's.- 6.6.4 Imperfect MQW's and Superlattices.- 6.6.4.1 Interdiffusion in MQW's and SL-Systems.- 6.6.4.2 Imperfect Superlattices: Period, Thickness, Composition Fluctuations.- 6.6.5 Strained-Layer Superlattices: Tilt, Terracing and Mosaic Spread.- 6.7 Scans in the Reciprocal Lattice.- 6.8 New Developments.- 6.8.1 Analysis of Quantum Wire Structures Using HRXRD..- 6.8.2 Real Time X-Ray Diffraction.- 6.9 Grazing-Incidence X-Ray Techniques.- 6.10 Reflection of X-Rays at Grazing Incidence.- 6.11 Specular and Non-Specular Scattering.- 6.12 Grazing-Incidence X-Ray Diffraction.- 6.13 Summary.- 6.14 Concluding Remarks.- References.


Best Sellers


Product Details
  • ISBN-13: 9783540591290
  • Publisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
  • Publisher Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Height: 235 mm
  • Returnable: N
  • Width: 155 mm
  • ISBN-10: 354059129X
  • Publisher Date: 12 Dec 1995
  • Binding: Hardback
  • Language: English
  • Weight: 795 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Optical Characterization of Epitaxial Semiconductor Layers
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG -
Optical Characterization of Epitaxial Semiconductor Layers
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Optical Characterization of Epitaxial Semiconductor Layers

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!