Buy Methoden der mathematischen Physik at Bookstore UAE
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Technology: general issues > Maths for engineers > Methoden der mathematischen Physik
37%
Methoden der mathematischen Physik

Methoden der mathematischen Physik


     0     
5
4
3
2
1



Available


X
About the Book

In diesem Buch, erstmals 1924 bzw. 1937 erschienen, spürt man noch wie am ersten Tag die Frische und Inspiration zweier großer Mathematiker und Lehrer. Hilbert kann man mit Fug und Recht als den letzten Mathematiker bezeichnen, der in allen Gebieten seiner Wissenschaft zu Hause war und in den verschiedensten Bereichen der Mathematik grundlegende neue Erkenntnisse gewann. Seine Resultate haben entscheidend die moderne Auffassung vom Wesen der Mathematik geprägt. Sein Schüler Courant galt und gilt auch heute noch als ein ausgezeichneter Lehrer, der auch schwierigste Materien verständlich darstellen konnte. Das bei Springer erschienene Buch von Courant/Robbins: Was ist Mathematik, kann in diesem Zusammenhang als beispielhaft genannt werden. Alles in allem eine großartige Zusammenfassung der mathematischen Hilfsmittel des Physikers, die auch heute noch viele enthusiastische Leser finden wird.

Table of Contents:
Erstes Kapitel.Die Algebra der linearen Transformationen und quadratischen Formen.- § 1. Lineare Gleichungen und lineare Transformationen.- § 2. Lineare Transformationen mit linearem Parameter.- § 3. Die Hauptachsentransformation der quadratischen und Hermiteschen Formen.- § 4. Die Minimum-Maximum-Eigenschaft der Eigenwerte.- § 5. Ergänzungen und Aufgaben zum ersten Kapitel.- Zweites Kapitel.Das Problem der Reihenentwicklung willkürlicher Funktionen.- § 1. Orthogonale Funktionensysteme.- § 2. Das Häufungsprinzip für Funktionen.- § 3. Unabhängigkeitsma? und Dimensionenzahl.- § 4. Der Weierstra?sche Approximationssatz. Vollständigkeit der Potenzen und der trigonometrischen Funktionen.- § 5. Die Fouriersche Reihe.- § 6. Das Fouriersche Integral.- § 7. Beispiele für das Fouriersche Integral.- § 8. Die Polynome von Legendre.- § 9. Beispiele anderer Orthogonalsysteme.- § 10. Ergänzungen und Aufgaben zum zweiten Kapitel.- Drittes Kapitel.Theorie der linearen Integralgleichungen.- § 1. Vorbereitende Betrachtungen.- § 2. Die Fredholmschen Sätze für ausgeartete Kerne.- § 3. Die Fredholmschen Sätze für einen beliebigen Kern.- § 4. Die symmetrischen Kerne und ihre Eigenwerte.- § 5. Der Entwicklungssatz und seine Anwendungen.- § 6. Die Neumannsche Reihe und der reziproke Kern.- § 7. Die Fredholmschen Formeln.- § 8. Neubegründung der Theorie.- § 9. Erweiterung der Gültigkeitsgrenzen der Theorie.- § 10. Ergänzungen und Aufgaben zum dritten Kapitel.- Viertes Kapitel.Die Grundtatsachen der Variationsrechnung.- § 1. Die Problemstellung der Variationsrechnung.- § 2. Ansätze zur direkten Lösung.- § 3. Die Eulerschen Gleichungen der Variationsrechnung.- § 4. Bemerkungen und Beispiele zur Integration der Eulerschen Differentialgleichung.- § 5.Randbedingungen.- § 6. Die zweite Variation und die Legendresche Bedingung.- § 7. Variationsprobleme mit Nebenbedingungen.- § 8. Der invariante Charakter der Eulerschen Differentialgleichungen.- § 9. Transformation von Variationsproblemen in die kanonische und involutorische Gestalt.- § 10. Variationsrechnung und Differentialgleichungen der mathematischen Physik.- § 11. Ergänzungen und Aufgaben zum vierten Kapitel.- Fünftes Kapitel. Die Schwingungs- und Eigenwertprobleme der Mathematischen Physik.- § 1. Vorbemerkungen über lineare Differentialgleichungen.- § 2. Systeme von endlich vielen Freiheitsgraden.- § 3. Die schwingende Saite.- § 4. Der schwingende Stab.- § 5. Die schwingende Membran.- § 6. Die schwingende Platte.- § 7. Allgemeines über die Methode der Eigenfunktionen.- § 8. Schwingungen dreidimensionaler Kontinua.- § 9. Randwertproblem der Potentialtheorie und Eigenfunktionen.- § 10. Probleme vom Sturm-Liouvilleschen Typus. Singulare Randpunkte.- § 11. Über das asymptotische Verhalten der Lösungen Sturm-Liouvillescher Differentialgleichungen.- § 12. Eigenwertprobleme mit kontinuierlichem Spektrum.- § 13. Störungsrechnung.- § 14. Die Greensche Funktion (Einflu?funktion) und die Zurückführung von Differentialgleichungsproblemen auf Integralgleichungen.- § 15. Beispiele für Greensche Funktionen.- § 16. Ergänzungen zum fünften Kapitel.- Sechstes Kapitel. Anwendung der Variationsrechnung auf die Eigenwertprobleme.- § 1. Die Extremumseigenschaften der Eigenwerte.- § 2. Allgemeine Folgerungen aus den Extremumseigenschaften der Eigenwerte.- § 3. Der Vollständigkeitssatz und der Entwicklungssatz.- § 4. Die asymptotische Verteilung der Eigenwerte.- § 5. Eigenwertprobleme vom Schrödingerschen Typus.- § 6. Die Knoten derEigenfunktionen.- § 7. Ergänzungen und Aufgaben zum sechsten Kapitel.- Siebentes Kapitel. Spezielle durch Eigenwertprobleme definierte Funktionen.- § 1. Vorbemerkungen über lineare Differentialgleichungen zweiter Ordnung.- § 2. Die Besselschen Funktionen.- § 3. Die Kugelfunktionen von Legendre.- § 4. Anwendung der Methode der Integraltransformation auf die Legendreschen, Tschebyscheffschen, Hermiteschen und Laguerreschen Differentialgleichungen.- § 5. Die Kugelfunktionen von Laplace.- § 6. Asymptotische Entwicklungen.- Entnommen aus dem dem Band II von Courant — Hilbert.- Methoden der mathematischen Physik Seitenangaben der Überschriften, die sich einem § unterordne.- beziehen sich auf den erwähnten Band, dessen Seitenzahlen der Leser dort am Fu? der Seite finde.- Siebentes Kapitel. Lösung der Rand- und Eigenwertprobleme auf Grund der Variationsrechnung.- § 1. Vorbereitungen.- § 2. Die erste Randwertaufgabe.- § 3. Das Eigenwertproblem bei verschwindenden Randwerten.- § 4. Annahme der Randwerte bei zwei unabhängigen Veränderlichen.- § 5. Konstruktion der Grenzfunktionen und Konvergenzeigenschaften der Integrale E,D,H.- § 6. Zweite und dritte Randbedingung. Randwertaufgabe.- § 7. Das Eigenwertproblem bei zweiter und dritter Randwertbildung.- § 8. Diskussion der bei der zweiten und dritten Randbedingung zugrunde gelegten Gebiete.- § 9. Ergänzungen und Aufgaben.- § 10. Das Problem von Plateau.- Ergänzende Literaturangaben.- Sachverzeichnis zum Anhang.

Review :
From the reviews: "What a compliment for a textbook to get reprinted 70 years after its first publication - and not for historical purposes, but still with the same intention of providing a decent and well readable introduction to some aspects of mathematical physics." (Zentralblatt für Mathematik)



Product Details
  • ISBN-13: 9783540567967
  • Publisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
  • Publisher Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Edition: Revised edition
  • Language: German
  • Returnable: N
  • Width: 155 mm
  • ISBN-10: 3540567968
  • Publisher Date: 04 Oct 1993
  • Binding: Hardback
  • Height: 235 mm
  • No of Pages: 546
  • Returnable: N


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Methoden der mathematischen Physik
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG -
Methoden der mathematischen Physik
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Methoden der mathematischen Physik

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!