The Quantum Statistics of Dynamic Processes
Home > Mathematics and Science Textbooks > Physics > Quantum physics > The Quantum Statistics of Dynamic Processes: (Vol 86 Springer Series in Solid-State Sciences)
The Quantum Statistics of Dynamic Processes: (Vol 86 Springer Series in Solid-State Sciences)

The Quantum Statistics of Dynamic Processes: (Vol 86 Springer Series in Solid-State Sciences)


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Table of Contents:
1 General Aspects.- 1. The Concept of Statistical Physics.- 2. Summary of Quantum Theory.- 2.1 Observables as Operators. Commutation Relations.- 2.2 The Unitary Space $$ \mathfrak{U} $$ of States. Expectation Values.- 2.3 The Statistical Operator of a Mixed State.- 3. Quantum Theory in Liouville Space.- 3.1 The Liouville Space $$ \mathfrak{L} $$ (Without Scalar Product).- 3.1.1 The Elements in Liouville Space.- 3.1.2 Operators in $$ \mathfrak{L} $$ (Superoperators).- 3.2 The Formulations of Quantum-Theoretical Dynamics.- 3.2.1 The Fundamental Equations of Time Evolution.- 3.2.2 Dynamics in the Schrodinger Formulation.- 3.2.3 Dynamics in the Heisenberg Formulation.- 3.2.4 The Ehrenfest Theorem and Its Consequences.- 3.3 Subsystems.- 3.3.1 Combined Systems.- 3.3.2 The Product Liouville Space.- 3.3.3 Expectation Values in a Subsystem. The Reduced Statistical Operator.- 3.3.4 The Time Variation of the Reduced Statistical Operator.- 3.3.5 Transfer of Work and Heat into a Subsystem.- 3.4 Useful Operator Identities.- 3.4.1 Operator Identities for Time Evolution.- 3.4.2 Differentiation of Exponential Operators.- 4. Systems of Many Particles.- 4.1 The Mean Square Deviations of Macroscopic Observables.- 4.1.1 Microscopic Densities and Their Correlation Functions.- 4.1.2 Macroscopic Densities and Their Fluctuations.- 4.2 General Properties of the Time Evolution of Expectation Values.- 5. Information-Theoretical Construction of the Statistical Operator.- 5.1 The Uncertainty Measure of the Statistical Operator.- 5.1.1 Definition of the Uncertainty Measure n[?].- 5.1.2 Properties of the Uncertainty Measure n[?].- 5.1.3 The Relationship Between Information Theory and the Uncertainty Measure n[?].- 5.2 The Generalized Canonical Statistical Operator ?.- 5.2.1 Observation Levels.- 5.2.2 Determination of the Statistical Operator by Maximization of the Uncertainty Measure. Entropy with Respect to an Observation Level.- 5.2.3 Linear Transformations Within an Observation Level.- 5.2.4 Extension of the Observation Level.- 5.2.5 A Sufficient Observation Level. Representativity of a Generalized Canonical Statistical Operator.- 5.2.6 Stationary Generalized Canonical Statistical Operators.- 5.3 Examples of Generalized Canonical Statistical Operators.- 5.3.1 The Hamiltonian as an Observation Level.- 5.3.2 Partial Hamiltonians as Decomposable Observation Levels.- 5.3.3 Partial Hamiltonians as Nondecomposable Observation Levels.- 5.3.4 Projectors {PF} as Observation Levels.- 6. The Significance of Generalized Canonical Statistical Operators for Dynamic Processes.- 6.1 The Statistical Operator at the Beginning of a Process.- 6.2 Entropy Production in Dynamic Processes of Adiabatic Systems.- 6.3 Examples of Entropy Production in Dynamic Adiabatic Processes.- 6.3.1 The Dynamics of an Adiabatic Process in Going from One Thermal Equilibrium to Another.- 6.3.2 The Dynamics of an Adiabatic Process in Going from Thermal Equilibrium to an Inhibited Equilibrium.- 6.4 Accompanying Entropy S{G}(t) with Respect to an Observation Level {G}.- 2 Response to Time-Dependent External Fields.- 7. The Quantum-Statistical Formulation of Response Theory.- 7.1 Introduction to the Physical Problem.- 7.2 The Mathematical Formulation of the Problem.- 8. A Scalar Product in the Liouville Space for Linear Response Theory.- 8.1 Scalar Products and Projection Operators in Liouville Space.- 8.1.1 Properties of Scalar Products in L.- 8.1.2 Adjoint Operators (Superoperators) in L.- 8.1.3 Projection Operators P in L.- 8.1.4 The Generation of Orthogonal Elements in L Using Projection Operators.- 8.2 The Liouville Space with the Mori Scalar Product.- 8.2.1 Definition of the Mori Scalar Product.- 8.2.2 Properties of the Mori Scalar Product.- 8.3 The Physical Significance of the Mori Product.- 8.3.1 Interpretation of the Mori Product as a Linear Variation, Tr(d?*G).- 8.3.2 A Note on Formal Calculation with Non-Hermitian "Observables".- 8.3.3 The Isothermal Susceptibility.- 8.3.4 The Adiabatic Susceptibility.- 9. Linear Response Theory.- 9.1 The Kubo Formula.- 9.1.1 The Quantum-Statistical Formulation in the Time Domain.- 9.1.2 The Quantum-Statistical Formulation in the Frequency Domain.- 9.2 The Physical Interpretation of the Kubo Formula Using Particular Time-Dependent Fields.- 9.2.1 A Pulsed External Field.- 9.2.2 A Sudden Change in the External Field.- 9.2.3 An Harmonically Oscillating External Field.- 9.3 Properties of the Response and Relaxation Functions.- 9.3.1 The Linear Response Function.- 9.3.2 The Linear Relaxation Function.- 9.4 Properties of the Dynamic Susceptibility.- 9.4.1 Decomposition of ?MF(?) into Two Hermitian Matrices, ?'MF(?) and ?"MF(?).- 9.4.2 Relations Between ?MF(?) and ?MF(t) or ?MF(t).- 9.4.3 The Kramers-Kronig Relations.- 9.4.4 High-Frequency Behavior of ?MF(?).- 9.4.5 The Moments of the Spectral Density Function.- 9.5 The Limit of Slow Field Variation.- 9.5.1 Properties of the Isolated Susceptibility.- 9.5.2 The Physical Significance of the Isolated Susceptibility.- 9.5.3 Plateaus in the Relaxation Function.- 9.6 The Work Performed on the System..- 9.6.1 Average Power $$\bar W\left( {\omega _0 } \right)$$ in the Harmonic Steady State.- 9.6.2 The Work Performed, A(t1, t0), by a Field Acting from t0 to t1.- 9.7 Relations Between the Fourier-Transformed Time-Dependent Correlation Functions.- 9.8 The First Fluctuation-Dissipation Theorem.- 9.9 A Generalization of the Kubo Formula.- 10. Quadratic Response Theory.- 10.1 The Quadratic Response.- 10.1.1 Formulation in the Time Domain.- 10.1.2 Formulation in the Frequency Domain.- 10.1.3 Symmetrized Expressions.- 10.2 The Influence of Energy Entering the System.- 10.2.1 The Behavior of ?MMF(t1, t2) at Long Times.- 10.2.2 $$\varphi M_\alpha M_\gamma F\left( {t_1,\infty } \right) $$ as a Linear Response Function.- 10.2.3 Separation of the Response Function into ?|| and ??.- 10.3 Interpretation Using Time-Dependent Fields.- 10.3.1 The Superposition of Two Short Pulses.- 10.3.2 The Superposition of Two Harmonically Oscillating Fields.- 10.4 Concluding Remarks.- 3 Equations of Motion for Observables in the Case of Small Deviations from Equilibrium.- 11. Exact Integro-Dilferential Equations for Relaxation Processes.- 11.1 An Heuristic Introduction to the Langevin-Mori Theory.- 11.2 Mori's Integro-Differential Equations for Operators.- 11.2.1 Derivation and Interpretation.- 11.2.2 Choosing a Set of Observables G?.- 11.3 The Frequency and the Memory Matrices.- 11.3.1 The Eigenelements of the Frequency Matrix.- 11.3.2 Properties of the Memory Matrix. Dynamic Onsager-Casimir Coefficients.- 11.4 The Integro-Differential Equations for Relaxation Functions.- 11.4.1 Dynamics of the Correlation Matrix ?v?(t). Relationship to Linear Dynamic Response Theory.- 11.4.2 Integro-Differential Equations for the Expectation Values (t).- 12. Perturbation-Theoretical Treatment of the Frequency and Memory Matrix.- 12.1 The Leading Terms of a Perturbation-Theory Expansion in L1.- 12.1.1 A Set of Observables {G} as an Invariant Subspace L{G} with Respect to L0.- 12.1.2 Perturbation-Theory Expansion of the Scalar Products.- 12.1.3 The Leading Terms of a Perturbation-Theory Expansion of ?v? and ?v?(t).- 12.2 Extending the Set of Observables in a Manner Appropriate to the Perturbation.- 12.2.1 The Mori Equations for the Extended Set of Observables.- 12.2.2 Perturbation-Theoretical Approximations.- 13. The Transition to Differential Equations with Damping.- 13.1 One Slow Hermitian Observable.- 13.1.1 Separation of the Time Scales; Simplified Argument.- 13.1.2 Validity of the Approximation.- 13.2 A Set of Slow Observables.- 13.2.1 Carrying Out the Markovian Approximation.- 13.2.2 Properties of the Markovian Approximation.- 13.3 Modification of the Approximation Due to Rapid Oscillations.- 13.3.1 Principle.- 13.3.2 Formulation Using Matrices.- 13.3.3 Discussion Based on the Damped Harmonic Oscillator.- 14. Time Derivatives as a Special Set of Observables.- 14.1 Specialization of the Mori Integro-Differential Equations.- 14.1.1 The Space L{G} Spanned by the Derivatives.- 14.1.2 The Mori Equations for Time Derivatives.- 14.1.3 OrthogonaIObservables.- 14.2 A Continued-Fraction Expression for the Correlation Function ?(?).- 14.2.1 Exact Description.- 14.2.2 Neglecting the Memory Matrix.- 14.2.3 The Markovian Approximation.- 15. Dynamic Onsager-Casimir Coefficients as Linear Response Functions for Generalized Forces.- 15.1 The Integro-Differential Equations for the Expectation Values in Externally Driven Systems..- 15.1.1 The Set {G} in the Mori Projection Operator.- 15.1.2 The Derivation of Generalized Mori Equations for the Expectation Values (t) in an Externally Driven System.- 15.1.3 Time-Dependent Lagrange Multipliers ?v.(t) for the Accompanying Generalized Canonical Statistical Operator ? as Generalized Forces.- 15.2 The Irreversible Entropy Production in Linear Dynamic Processes.- 15.2.1 The Accompanying Entropy S{G(h)}(t).- 15.2.2 Significance of the Onsager-Casimir Coefficients L'v?(?) for Entropy Production.- 15.3 The Second Fluctuation-Dissipation Theorem.- 15.3.1 The Residual Force f?(t).- 15.3.2 Equilibrium Correlation Functions of f? (?).- 16. Physical Examples.- 16.1 A Heavy Particle in an Elastic Chain: A Model Which Can Be Solved Exactly - Rubin's Model.- 16.1.1 Dynamics of the Residual Force.- 16.1.2 The Memory Function.- 16.1.3 Separation of the Time Scales.- 16.1.4 Discussion of the Exact Solution ?(t).- 16.2 Spin-Bath Relaxation.- 16.3 Magnetic Resonance.- 16.3.1 Reduction to a Single Equation for ?+ + (t).- 16.3.2 Perturbation Theory and the Markovian Approximation.- 16.3.3 Reduction to Bath Correlation Functions.- 16.4 A Local Conservation Law.- 16.4.1 Decoupling of the Fourier Components.- 16.4.2 The Wavenumber as a Slowness Parameter.- 4 Equations of Motion of the Relevant Parts of the Statistical Operator.- 17. Mappings of the Statistical Operator onto a Relevant Part.- 17.1 The Concept of the Relevant Part, ?rel(t).- 17.2 Linear Relation Between ?rel(t) and ?(t).- 17.2.1 Properties of the Operator P.- 17.2.2 Explicit Expressions for P.- 17.2.3 The Nakajima-Zwanzig Equation.- 17.2.4 Example: ?rel(t) of a Subsystem.- 17.2.5 The Explicit Time Dependence of the Operators P and L.- 17.3 Nonlinear Relation Between ?rel(t) and ?(t).- 17.3.1 Properties of the Mapping.- 17.3.2 Nonlinear Dynamical Equation for ?rel(t).- 18. The Generalized Canonical Statistical Operator ?(t) as ?rel (t).- 18.1 The Linear Case.- 18.2 The Robertson Equation.- A. Equivalence of the Nakajima-Zwanzig Equation and the Generalized-Operator Langevin Equation.- B. Symmetries.- B.1.1 Properties of D(g).- B.1.2 Selection Rules.- B.2.2 Symmetry Properties Resulting from Time-Reversal Invariance.- Solutions to the Exercises.


Best Sellers


Product Details
  • ISBN-13: 9783540508243
  • Publisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
  • Publisher Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Height: 240 mm
  • Returnable: N
  • Weight: 740 gr
  • ISBN-10: 3540508244
  • Publisher Date: 06 Sep 1990
  • Binding: Hardback
  • Language: German
  • Series Title: Vol 86 Springer Series in Solid-State Sciences


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
The Quantum Statistics of Dynamic Processes: (Vol 86 Springer Series in Solid-State Sciences)
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG -
The Quantum Statistics of Dynamic Processes: (Vol 86 Springer Series in Solid-State Sciences)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

The Quantum Statistics of Dynamic Processes: (Vol 86 Springer Series in Solid-State Sciences)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!