Advances in Knowledge Discovery and Data Mining - Bookswagon
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Computer science > Artificial intelligence > Advances in Knowledge Discovery and Data Mining: 6th Pacific-Asia Conference, PAKDD 2002, Taipei, Taiwan, May 6-8, 2002. Proceedings(2336 Lecture Notes in Computer Science)
Advances in Knowledge Discovery and Data Mining: 6th Pacific-Asia Conference, PAKDD 2002, Taipei, Taiwan, May 6-8, 2002. Proceedings(2336 Lecture Notes in Computer Science)

Advances in Knowledge Discovery and Data Mining: 6th Pacific-Asia Conference, PAKDD 2002, Taipei, Taiwan, May 6-8, 2002. Proceedings(2336 Lecture Notes in Computer Science)


     0     
5
4
3
2
1



Available


X
About the Book

This book constitutes the refereed proceedings of the 6th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2002, held in Taipei, Taiwan, in May 2002. The 32 revised full papers and 20 short papers presented together with 4 invited contributions were carefully reviewed and selected from a total of 128 submissions. The papers are organized in topical sections on association rules; classification; interestingness; sequence mining; clustering; Web mining; semi-structure and concept mining; data warehouse and data cube; bio-data mining; temporal mining; and outliers, missing data, and causation.

Table of Contents:
Industrial Papers (Invited).- Network Data Mining and Analysis: The Project.- Privacy Preserving Data Mining: Challenges and Opportunities.- Survey Papers (Invited).- A Case for Analytical Customer Relationship Management.- On Data Clustering Analysis: Scalability, Constraints, and Validation.- Association Rules (I).- Discovering Numeric Association Rules via Evolutionary Algorithm.- Efficient Rule Retrieval and Postponed Restrict Operations for Association Rule Mining.- Association Rule Mining on Remotely Sensed Images Using P-trees.- On the Efficiency of Association-Rule Mining Algorithms.- Classification (I).- A Function-Based Classifier Learning Scheme Using Genetic Programming.- SNNB: A Selective Neighborhood Based Naïve Bayes for Lazy Learning.- A Method to Boost Naïve Bayesian Classifiers.- Toward Bayesian Classifiers with Accurate Probabilities.- Interestingness.- Pruning Redundant Association Rules Using Maximum Entropy Principle.- A Confidence-Lift Support Specification for Interesting Associations Mining.- Concise Representation of Frequent Patterns Based on Generalized Disjunction-Free Generators.- Mining Interesting Association Rules: A Data Mining Language.- The Lorenz Dominance Order as a Measure of Interestingness in KDD.- Sequence Mining.- Efficient Algorithms for Incremental Update of Frequent Sequences.- DELISP: Efficient Discovery of Generalized Sequential Patterns by Delimited Pattern-Growth Technology.- Self-Similarity for Data Mining and Predictive Modeling A Case Study for Network Data.- A New Mechanism of Mining Network Behavior.- Clustering.- M-FastMap: A Modified FastMap Algorithm for Visual Cluster Validation in Data Mining.- An Incremental Hierarchical Data Clustering Algorithm Based on Gravity Theory.- Adding Personality toInformation Clustering.- Clustering Large Categorical Data.- Web Mining.- WebFrame: In Pursuit of Computationally and Cognitively Efficient Web Mining.- Naviz:Website Navigational Behavior Visualizer.- Optimal Algorithms for Finding User Access Sessions from Very Large Web Logs.- Automatic Information Extraction for Multiple Singular Web Pages.- Association Rules (II).- An Improved Approach for the Discovery of Causal Models via MML.- SETM*-MaxK: An Efficient SET-Based Approach to Find the Largest Itemset.- Discovery of Ordinal Association Rules.- Value Added Association Rules.- Top Down FP-Growth for Association Rule Mining.- Semi-structure & Concept Mining.- Discovery of Frequent Tag Tree Patterns in Semistructured Web Documents.- Extracting Characteristic Structures among Words in Semistructured Documents.- An Efficient Algorithm for Incremental Update of Concept Spaces.- Data Warehouse and Data Cube.- Efficient Constraint-Based Exploratory Mining on Large Data Cubes.- Efficient Utilization of Materialized Views in a Data Warehouse.- Bio-Data Mining.- Mining Interesting Rules in Meningitis Data by Cooperatively Using GDT-RS and RSBR.- Evaluation of Techniques for Classifying Biological Sequences.- Efficiently Mining Gene Expression Data via Integrated Clustering and Validation Techniques.- Classification (II).- Adaptive Generalized Estimation Equation with Bayes Classifier for the Job Assignment Problem.- GEC: An Evolutionary Approach for Evolving Classifiers.- An Efficient Single-Scan Algorithm for Mining Essential Jumping Emerging Patterns for Classification.- A Method to Boost Support Vector Machines.- Temporal Mining.- Distribution Discovery: Local Analysis of Temporal Rules.- News Sensitive Stock Trend Prediction.- User Profiling for Intrusion Detection Using Dynamic and Static Behavioral Models.- Classification (III).- Incremental Extraction of Keyterms for Classifying Multilingual Documents in the Web.- k-nearest Neighbor Classification on Spatial Data Streams Using P-trees.- Interactive Construction of Classification Rules.- Outliers, Missing Data, and Causation.- Enhancing Effectiveness of Outlier Detections for Low Density Patterns.- Cluster-Based Algorithms for Dealing with Missing Values.- Extracting Causation Knowledge from Natural Language Texts.- Mining Relationship Graphs for Effective Business Objectives.


Best Sellers


Product Details
  • ISBN-13: 9783540437048
  • Publisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
  • Publisher Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Height: 235 mm
  • No of Pages: 570
  • Returnable: Y
  • Series Title: 2336 Lecture Notes in Computer Science
  • Width: 155 mm
  • ISBN-10: 3540437045
  • Publisher Date: 26 Apr 2002
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Series Title: 2336 Lecture Notes in Computer Science
  • Sub Title: 6th Pacific-Asia Conference, PAKDD 2002, Taipei, Taiwan, May 6-8, 2002. Proceedings


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Advances in Knowledge Discovery and Data Mining: 6th Pacific-Asia Conference, PAKDD 2002, Taipei, Taiwan, May 6-8, 2002. Proceedings(2336 Lecture Notes in Computer Science)
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG -
Advances in Knowledge Discovery and Data Mining: 6th Pacific-Asia Conference, PAKDD 2002, Taipei, Taiwan, May 6-8, 2002. Proceedings(2336 Lecture Notes in Computer Science)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Advances in Knowledge Discovery and Data Mining: 6th Pacific-Asia Conference, PAKDD 2002, Taipei, Taiwan, May 6-8, 2002. Proceedings(2336 Lecture Notes in Computer Science)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!