Machine Learning: ECML 2004
Home > Computing and Information Technology > Computer science > Artificial intelligence > Machine learning > Machine Learning: ECML 2004: 15th European Conference on Machine Learning, Pisa, Italy, September 20-24, 2004, Proceedings(3201 Lecture Notes in Computer Science)
Machine Learning: ECML 2004: 15th European Conference on Machine Learning, Pisa, Italy, September 20-24, 2004, Proceedings(3201 Lecture Notes in Computer Science)

Machine Learning: ECML 2004: 15th European Conference on Machine Learning, Pisa, Italy, September 20-24, 2004, Proceedings(3201 Lecture Notes in Computer Science)

|
     0     
5
4
3
2
1




International Edition


About the Book

The proceedings of ECML/PKDD 2004 are published in two separate, albeit - tertwined,volumes:theProceedingsofthe 15thEuropeanConferenceonMac- ne Learning (LNAI 3201) and the Proceedings of the 8th European Conferences on Principles and Practice of Knowledge Discovery in Databases (LNAI 3202). The two conferences were co-located in Pisa, Tuscany, Italy during September 20-24, 2004. It was the fourth time in a row that ECML and PKDD were co-located. - ter the successful co-locations in Freiburg (2001), Helsinki (2002), and Cavtat- Dubrovnik (2003), it became clear that researchersstrongly supported the or- nization of a major scienti?c event about machine learning and data mining in Europe. We are happy to provide some statistics about the conferences. 581 di?erent papers were submitted to ECML/PKDD (about a 75% increase over 2003); 280 weresubmittedtoECML2004only,194weresubmittedtoPKDD2004only,and 107weresubmitted to both.Aroundhalfofthe authorsforsubmitted papersare from outside Europe, which is a clear indicator of the increasing attractiveness of ECML/PKDD. The Program Committee members were deeply involved in what turned out to be a highly competitive selection process. We assigned each paper to 3 - viewers, deciding on the appropriate PC for papers submitted to both ECML and PKDD. As a result, ECML PC members reviewed 312 papers and PKDD PC members reviewed 269 papers. We accepted for publication regular papers (45 for ECML 2004 and 39 for PKDD 2004) and short papers that were as- ciated with poster presentations (6 for ECML 2004 and 9 for PKDD 2004). The globalacceptance ratewas14.5%for regular papers(17% if we include the short papers).

Table of Contents:
Invited Papers.- Random Matrices in Data Analysis.- Data Privacy.- Breaking Through the Syntax Barrier: Searching with Entities and Relations.- Real-World Learning with Markov Logic Networks.- Strength in Diversity: The Advance of Data Analysis.- Contributed Papers.- Filtered Reinforcement Learning.- Applying Support Vector Machines to Imbalanced Datasets.- Sensitivity Analysis of the Result in Binary Decision Trees.- A Boosting Approach to Multiple Instance Learning.- An Experimental Study of Different Approaches to Reinforcement Learning in Common Interest Stochastic Games.- Learning from Message Pairs for Automatic Email Answering.- Concept Formation in Expressive Description Logics.- Multi-level Boundary Classification for Information Extraction.- An Analysis of Stopping and Filtering Criteria for Rule Learning.- Adaptive Online Time Allocation to Search Algorithms.- Model Approximation for HEXQ Hierarchical Reinforcement Learning.- Iterative Ensemble Classification for RelationalData: A Case Study of Semantic Web Services.- Analyzing Multi-agent Reinforcement Learning Using Evolutionary Dynamics.- Experiments in Value Function Approximation with Sparse Support Vector Regression.- Constructive Induction for Classifying Time Series.- Fisher Kernels for Logical Sequences.- The Enron Corpus: A New Dataset for Email Classification Research.- Margin Maximizing Discriminant Analysis.- Multi-objective Classification with Info-Fuzzy Networks.- Improving Progressive Sampling via Meta-learning on Learning Curves.- Methods for Rule Conflict Resolution.- An Efficient Method to Estimate Labelled Sample Size for Transductive LDA(QDA/MDA) Based on Bayes Risk.- Analyzing Sensory Data Using Non-linear Preference Learning with Feature Subset Selection.- Dynamic Asset Allocation Exploiting Predictors in Reinforcement Learning Framework.- Justification-Based Selection of Training Examples for Case Base Reduction.- Using Feature Conjunctions Across Examples for Learning Pairwise Classifiers.- Feature Selection Filters Based on the Permutation Test.- Sparse Distributed Memories for On-Line Value-Based Reinforcement Learning.- Improving Random Forests.- The Principal Components Analysis of a Graph, and Its Relationships to Spectral Clustering.- Using String Kernels to Identify Famous Performers from Their Playing Style.- Associative Clustering.- Learning to Fly Simple and Robust.- Bayesian Network Methods for Traffic Flow Forecasting with Incomplete Data.- Matching Model Versus Single Model: A Study of the Requirement to Match Class Distribution Using Decision Trees.- Inducing Polynomial Equations for Regression.- Efficient Hyperkernel Learning Using Second-Order Cone Programming.- Effective Voting of Heterogeneous Classifiers.- Convergence and Divergence in Standard and Averaging Reinforcement Learning.- Document Representation for One-Class SVM.- Naive Bayesian Classifiers for Ranking.- Conditional Independence Trees.- Exploiting Unlabeled Data in Content-BasedImage Retrieval.- Population Diversity in Permutation-Based Genetic Algorithm.- Simultaneous Concept Learning of Fuzzy Rules.- Posters.- SWITCH: A Novel Approach to Ensemble Learning for Heterogeneous Data.- Estimating Attributed Central Orders.- Batch Reinforcement Learning with State Importance.- Explicit Local Models: Towards “Optimal” Optimization Algorithms.- An Intelligent Model for the Signorini Contact Problem in Belt Grinding Processes.- Cluster-Grouping: From Subgroup Discovery to Clustering.


Best Sellers


Product Details
  • ISBN-13: 9783540231059
  • Publisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
  • Publisher Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Height: 229 mm
  • No of Pages: 582
  • Returnable: N
  • Series Title: 3201 Lecture Notes in Computer Science
  • Width: 152 mm
  • ISBN-10: 3540231056
  • Publisher Date: 07 Sep 2004
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Series Title: 3201 Lecture Notes in Computer Science
  • Sub Title: 15th European Conference on Machine Learning, Pisa, Italy, September 20-24, 2004, Proceedings


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Machine Learning: ECML 2004: 15th European Conference on Machine Learning, Pisa, Italy, September 20-24, 2004, Proceedings(3201 Lecture Notes in Computer Science)
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG -
Machine Learning: ECML 2004: 15th European Conference on Machine Learning, Pisa, Italy, September 20-24, 2004, Proceedings(3201 Lecture Notes in Computer Science)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Machine Learning: ECML 2004: 15th European Conference on Machine Learning, Pisa, Italy, September 20-24, 2004, Proceedings(3201 Lecture Notes in Computer Science)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!