Computer Studies of Phase Transitions and Critical Phenomena
Home > Mathematics and Science Textbooks > Physics > Mathematical physics > Computer Studies of Phase Transitions and Critical Phenomena: (Scientific Computation)
Computer Studies of Phase Transitions and Critical Phenomena: (Scientific Computation)

Computer Studies of Phase Transitions and Critical Phenomena: (Scientific Computation)


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This book is based on research carried out by the author in close collabora- tion with a number of colleagues. In particular, I wish to thank Per Bak, A. John Berlinsky, Hans C. Fogedby, Barry Frank, S. 1. Knak Jensen, David Mukamel, David Pink, and Martin Zuckermann for fruitful and extremely stimulating cooperation. It is a pleasure for me to note that active interaction with most of these colleagues is still continuing. The work has been performed at several different institutions, notably the Department of Chemistry, Aarhus University, Denmark, and the Depart- ment of Physics, University of British Columb~a, Canada. I wish to thank the Department of Chemistry at Aarhus University for providing me with splen- did research facilities over the years. From May 1980 to August 1981, I visited the Department of Physics at the University of British Columbia and I would like to express my sincere gratitude to members ofthe department for provi- ding me with excellent working conditions. My special thanks are due to Professor Myer Bloom who introduced me to the field of phase transitions in biological membranes and in whose biomembrane group I found an extre- mely stimulating scientific atmosphere happily married with a most agreeable social climate. During the last two years when a major part ofthis work was carried out, I was supported by AlS De Danske Spritfabrikker through their Jubilreumsle- gat of 1981. Their support is gratefully acknowledged.

Table of Contents:
1. Introduction.- 2. Computer Methods in the Study of Phase Transitions and Critical Phenomena.- 2.1 Statistical Mechanics and Phase Transitions.- 2.1.1 Modern theories of phase transitions and critical phenomena.- 2.1.2 Statistical mechanics, order parameters, fluctuations, critical exponents, scaling, and universality.- 2.2 Numerical Simulation Techniques.- 2.2.1 Monte Carlo methods.- 2.2.2 A Monte Carlo importance-sampling method.- 2.2.3 A realization of a Monte Carlo method.- 2.2.4 General limitations of the Monte Carlo method.- 2.2.5 Broken ergodicity.- 2.2.6 Distribution functions.- 2.2.7 Coarse-graining techniques and criteria of convergence.- 2.2.8 Finite-size effects.- 2.2.9 Determining the nature of a phase transition.- 2.2.10 Computational details.- 2.2.11 General advantages of the Monte Carlo method: Applications.- 2.3 Exact Configurational Counting and Series Expansions.- 2.3.1 A general approach.- 2.3.2 The moment method.- 2.3.3 Principles of the calculation.- 2.3.4 Step 1. Determination of all distinct graphs and their multiplicities.- 2.3.5 Step 2. Embedding of connected graphs into a lattice.- 2.3.6 General correlation function series.- 2.3.7 Capabilities and limitations of a general approach.- 3. Monte Carlo Pure-model Calculations.- 3.1 Critical Behavior of the Three-dimensional Ising Model.- 3.1.1 The Ising model and its order parameter.- 3.1.2 Numerical evidence of a phase transition in the Ising model on a diamond lattice.- 3.1.3 Finite-size scaling analysis and critical behavior.- 3.1.4 Are Monte Carlo techniques practicable in the study of critical phenomena?.- 3.2 Phase Behavior of Ising Models with Multi-spin Interactions.- 3.2.1 Higher-order exchange in magnetic systems.- 3.2.2 Ising models with multi-spin interactions.- 3.2.3 First-order phase transitions of Ising models with pure multi-spin interactions.- 3.2.4 Universality and tricritical behavior of Ising models with two- and four-spin interactions: Pair interactions as a symmetry-breaking field.- 3.3 Thermodynamics of One-dimensional Heisenberg Models.- 3.3.1 One-dimensional magnetic models.- 3.3.2 The anisotropic Heisenberg model in a magnetic field.- 3.3.3 Comparison with theoretical calculations on a continuum model.- 3.3.4 A model ofthe linear magnet CsNiF3?.- 4. Testing Modern Theories of Critical Phenomena.- 4.1 Fluctuation-induced First-order Phase Transitions.- 4.1.1 The role of fixed points in the renormalization group theory.- 4.1.2 Motivation for computer studies of fluctuation-induced first-order phase transitions.- 4.1.3 Phase transitions in antiferromagnets with order Parameters of dimension n=6 and n=3.- 4.1.4 Crossover from first-order to continuous transitions in a symmetry-breaking field.- 4.1.5 Fluctuation-induced first-order phase transitions in Ising models with competing interactions.- 4.2 Critical Phenomena at Marginal Dimensionality.- 4.2.1 The role of a marginal spatial dimension.- 4.2.2 Computer experiments of hypercubic Ising models: ?A romance of many dimensions?.- 4.2.3 Susceptibility and critical isotherm of the four-dimensional Ising model.- 4.2.4 Conclusions on critical behavior in marginal dimensions.- 4.3 Basic Assumptions of Critical Correlation Theories.- 4.3.1 Review of a critical correlation theory.- 4.3.2 Testing the basic assumption by Monte Carlo calculations.- 5. Numerical Experiments.- 5.1 Phase Transitions in Lipid Bilayers and Biological Membranes.- 5.1.1 What are biological membranes and what do they do?.- 5.1.2 Lipid bilayers are model membranes.- 5.1.3 Phase behavior of lipid bilayers.- 5.1.4 Back to biology: Are phase transitions at all relevant to the biological functions of the membrane?.- 5.1.5 Theories of lipid bilayer phase transitions.- 5.1.6 Computer simulations of lipid bilayers.- 5.1.7 Multi-state models of lipid bilayers.- 5.1.8 Computer simulations of the q-state models for the gel-fluid phase transition.- 5.1.9 Computer Simulation of the phase behavior of lipid bilayers with ?impurities?: cholesterol, proteins, and Polypeptides.- 5.1.10 Have Computer studies provided any new insight into the properties of biological membranes?.- 5.2 Nuclear Dipolar Magnetic Ordering and Phase Transitions.- 5.2.1 Nuclear dipolar magnetic ordering.- 5.2.2 The secular dipolar Hamiltonian.- 5.2.3 Perspectives in studies of nuclear dipolar magnetic ordering.- 5.2.4 Motivation for a numerical Simulation study of nuclear dipolar magnetic ordering.- 5.2.5 Monte Carlo studies of systems with truncated classical secular dipolar interactions.- 5.2.6 Nature of the spin structures: ?Permanent? structures or the devil's staircase?.- 5.2.7 Double-layered spin structures in CaF2-like systems: Continuous transitions and critical behavior.- 5.2.8 Multi-layered spin structures in CaF2-like systems: Firstorder phase transitions.- 5.2.9 Can series expansions provide information on the nature of the phase transitions?.- 5.2.10 Nuclear antiferrimagnetic susceptibilities of systems with two spin species: LiF and LiH.- 5.3 Phase Transitions of Adsorbed Monolayers.- 5.3.1 Two-dimensional phases of molecules adsorbed on solid surfaces.- 5.3.2 N2 physisorbed on graphite: The anisotropic-planar rotor model.- 5.3.3 The Heisenberg model with cubic anisotropy.- 5.3.4 Fluctuation-induced first-order phase transition in the anisotropic-planar rotor model.- 5.3.5 Comparison with experiments on N2 physisorbed on graphite.- 5.3.6 Phase behavior on the anisotropic-planar rotor model with vacancies.- 5.3.7 Physical realizations of the anisotropic-planar rotor model with vacancies.- 5.4 Kinetics of Growth.- 5.4.1 Growth.- 5.4.2 Computer Simulation of domain-growth kinetics.- 5.4.3 Domain-growth kinetics of herringbonephases.- 5.4.4 Domain-growth kinetics of pinwheel phases.- 5.4.5 Kinetics of growth and critical phenomena.


Best Sellers


Product Details
  • ISBN-13: 9783540133971
  • Publisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
  • Publisher Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Language: English
  • Series Title: Scientific Computation
  • ISBN-10: 3540133976
  • Publisher Date: 01 Oct 1984
  • Binding: Hardback
  • Returnable: N
  • Weight: 430 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Computer Studies of Phase Transitions and Critical Phenomena: (Scientific Computation)
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG -
Computer Studies of Phase Transitions and Critical Phenomena: (Scientific Computation)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Computer Studies of Phase Transitions and Critical Phenomena: (Scientific Computation)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!