Buy Supported Metal Single Atom Catalysis at Bookstore UAE
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Industrial chemistry and manufacturing technologies > Industrial chemistry and chemical engineering > Supported Metal Single Atom Catalysis
Supported Metal Single Atom Catalysis

Supported Metal Single Atom Catalysis


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

>Supported Metal Single Atom Catalysis Covers all key aspects of supported metal single atom catalysts, an invaluable resource for academic researchers and industry professionals alike Single atom catalysis is one of the most innovative and dynamic research areas in catalysis science. Supported metal catalysts are used extensively across the chemical industry, ranging from fine and bulk chemical production to petrochemicals. Single atom catalysts (SACs) combine the advantages of both homogeneous and heterogeneous catalysts such as catalyst stability, activity, and high dispersion of the active phase. Supported Metal Single Atom Catalysis provides an authoritative and up-to-date overview of the emerging field, covering the synthesis, preparation, characterization, modeling, and applications of SACs. This comprehensive volume introduces the basic principles of single atom catalysis, describes metal oxide and carbon support materials for SAC preparation, presents characterization techniques and theoretical calculations, and discusses SACs in areas including selective hydrogenation, oxidation reactions, activation of small molecules, C-C bond formation, and biomedical applications. Highlights the activity, selectivity, and stability advantages of supported metal SACs compared to other heterogeneous catalysts Covers applications of SACs in thermal catalysis, electrocatalysis, and photocatalysis Includes chapters on single atom alloys and supported double and triple metal atom catalysts Discusses the prospects, challenges, and potential industrial applications of SACs Supported Metal Single Atom Catalysis is an indispensable reference for all those working in the fields of catalysis, solid-state chemistry, materials science, and spectroscopy, including catalytic chemists, organic chemists, electrochemists, theoretical chemists, and industrial chemists.

Table of Contents:
Foreword xv Preface xxi 1 Introduction to Supported Metal Single Atom Catalysis 1 Doan Pham Minh and Philippe Serp 1.1 Introduction 1 1.2 Definition 4 1.3 Origins of Supported Metal Single Atom Catalysts 7 1.4 Challenges, Limitations, and Possible Opportunities in Supported Metal Single Atom Catalysis 14 1.4.1 Metal Loading in Supported Metal Single Atom Catalysts 14 1.4.2 Metallic Species Homogeneity in Supported Metal Single Atom Catalysts 17 1.4.2.1 Are Clusters or Nanoparticles Present in Supported Metal Single Atom Catalysts? 17 1.4.2.2 Control of the Local Environment of Single Atoms in Supported Metal Single Atom Catalysts 18 1.4.3 Metal Single Atom Stability and Dynamic in Supported Metal Single Atom Catalysts 21 1.4.3.1 Thermal and Chemical Stability 21 1.4.3.2 Supported Single Atom Dynamics in Chemical Reactions 26 1.4.4 Obtaining Reliable Information About the Active Sites of Metal SACs 30 Acknowledgments 31 References 31 2 Preparation of Supported Metal Single-Atom Catalysts on Metal Oxides and Hydroxides 51 Canio Scarfiello, Jeremy Audevard, Carole Le Berre, Katerina Soulantica, Philippe Serp, and Doan Pham Minh 2.1 Introduction 51 2.2 Gas-Phase Deposition Methods 52 2.2.1 Mass-Selected Soft-Landing Method 52 2.2.2 Atomic Layer Deposition (ALD) Method 53 2.3 Wet Chemistry Methods 58 2.3.1 Impregnation Methods 58 2.3.1.1 Wet Impregnation 58 2.3.1.2 Incipient Wetness Impregnation (IWI) 66 2.3.1.3 Strong Electrostatic Adsorption (SEA) 70 2.3.2 Co-precipitation Method 74 2.3.3 Deposition–Precipitation Method (DP) 77 2.3.4 SAC Synthesis via Ion Exchange 80 2.3.5 Sol–Gel Solvent Vaporization Self-Assembly Method 82 2.4 Photochemical Methods 83 2.5 Electro-chemical Methods 85 2.6 Top-Down Methods 87 2.7 Other Methods 90 2.8 Conclusions 92 Acknowledgments 93 References 93 3 Preparation of Supported Metal Single-Atom Catalysts on Carbon Supports 101 Camila Rivera-Cárcamo and Philippe Serp 3.1 Introduction 101 3.2 Atomic Layer Deposition (ALD) 102 3.3 Solution-Phase Syntheses 105 3.3.1 Impregnation 105 3.3.2 Low-Temperature Techniques 109 3.4 Sputtering 111 3.5 Top-Down Methods 114 3.6 Pyrolysis Methods 117 3.6.1 MOF-Derived SACs 118 3.6.2 Template Sacrificial Approach 121 3.6.3 Other Sources 124 3.7 Polymerization 127 3.8 Other Methods 130 3.9 Conclusion 133 Acknowledgments 135 References 135 4 Single-Metal Alloys 145 Jianyu Han, Junju Mu, and Feng Wang 4.1 Introduction 145 4.2 Diluted Single-Atom Alloy Catalysts 146 4.2.1 Synthesis of Diluted Single-Atom Alloy Catalysts 146 4.2.2 Characterizations of Diluted Single-Atom Alloy Catalysts 148 4.2.3 Catalytic Performances of Diluted Single-Atom Alloy Catalysts 149 4.3 Single-Atom Doping Alloy Catalysts 150 4.3.1 Synthesis of Single-Atom Doping Alloy Catalysts 150 4.3.2 Characterizations of Single-Atom Doping Catalysts 152 4.3.3 Catalytic Applications of Single-Atom Doping Alloys 153 4.4 Diatomic Alloy Catalysts 153 4.4.1 Synthesis of Diatomic Alloy Catalysts 153 4.4.2 Characterizations of Diatomic Alloy Catalysts 155 4.4.3 Catalytic Applications of Diatomic Alloys 156 4.5 Machine Learning-Guided Single-Atom Alloy Catalyst Design 157 4.6 Perspectives 159 References 161 5 Characterization of Supported Metal Single-Atom Catalysts 169 Lei Zhang, Kieran Doyle-Davis, and Xueliang Sun 5.1 Introduction 169 5.2 Morphology Characterization 170 5.2.1 Transmission Electron Microscopy (TEM) 170 5.2.1.1 Introduction of TEM 170 5.2.1.2 TEM Characterization Technique 171 5.2.1.3 Characterization of Typical SACs 171 5.2.2 Scanning Tunneling Microscopy (STM) 175 5.2.2.1 Introduction of STM 175 5.2.2.2 STM Characterization of SACs 176 5.3 Structure Characterization 177 5.3.1 Synchrotron Radiation X-ray 177 5.3.1.1 Fundamentals of Synchrotron Radiation X-ray 177 5.3.1.2 XANES 177 5.3.1.3 EXAFS 179 5.3.1.4 In situ XAS Study on Structural Evolution During Catalytic Reaction 182 5.3.2 Infrared (IR) Spectroscopy 183 5.3.3 Mössbauer Spectroscopy 186 5.3.4 X-ray Photoelectron Spectroscopy (XPS) 187 5.3.5 Solid-State Nuclear Magnetic Resonance 189 5.3.6 Electron Paramagnetic Resonance (EPR) 190 5.3.7 Photoluminescence 190 5.4 Loading Amount Characterization 191 5.4.1 Inductively Coupled Plasma Atomic Emission Spectrometry 191 5.4.2 Thermogravimetric Analysis 192 5.5 Summaries and Outlook 192 References 193 6 In situ/Operando Techniques for Characterization of Supported Metal Single-Atom Catalysts 199 Alberto Casu, Samy Ould-Chikh, Gavin Mountjoy, Anna Corrias, and Andrea Falqui 6.1 Introduction 199 6.2 In situ/Operando XAS 200 6.2.1 Method 200 6.2.2 X-ray Absorption Near-Edge Structure (XANES) 201 6.2.3 Extended X-ray Absorption Fine Structure (EXAFS) 202 6.2.4 In situ/Operando XAS of SACs Consisting of Transition Metals in Period 3 203 6.2.5 In situ/Operando XAS of SACs Consisting of Precious Metals in Period 4 205 6.2.6 In situ/Operando XAS of SACs Consisting of Platinum on Oxide Supports 206 6.2.7 In situ/Operando XAS of SACs Consisting of Platinum on Non-oxide Supports 208 6.2.8 In situ/Operando XAS of SACs Consisting of Precious Metals in Period 5 Other than Platinum 209 6.2.9 In situ/Operando XAS of Other Atoms in SACs and Further Studies 210 6.3 Other In situ/Operando Spectroscopies: IR, UV–vis and Mössbauer Spectroscopies, and XPS 210 6.3.1 Methods 210 6.3.2 In situ/Operando IR Spectroscopy of SACs Consisting of Platinum 212 6.3.3 In situ/Operando IR Spectroscopy of SACs Consisting of Metal Atoms Other than Platinum 215 6.3.4 In situ/Operando UV–vis and Mössbauer Spectroscopy, and XPS of SACs 216 6.4 In situ/Operando Electron Microscopy 218 6.4.1 State of the Art 218 6.4.2 In situ Imaging During the Synthesis of SACs 221 6.4.3 In situ Observation of Catalysis Reactions at Single Atoms in Motion 226 6.5 Summary and Conclusions 232 References 234 7 Contribution of Theoretical Calculations to Supported Metal Single-Atom Catalysis 241 Javier Navarro-Ruiz, Romuald Poteau, Iann C. Gerber, and Iker del Rosal 7.1 Introduction 241 7.2 Carbon-Based Support Models 242 7.2.1 Anchoring Sites on Carbon Materials 243 7.2.1.1 SAs-Fullerene 243 7.2.1.2 SAs-CNT 244 7.2.1.3 SAs-Graphene 245 7.2.2 Physicochemical Properties of the SAs upon Anchorage 248 7.2.2.1 Platinum 249 7.2.2.2 Palladium 250 7.2.2.3 Other TMs 251 7.3 Hydrogen Spillover 252 7.3.1 Hydrogen Adsorption and Dissociation on the Metal Catalyst 253 7.3.2 Hydrogen Migration from the Metal Catalyst to the Support 256 7.3.3 Hydrogen Diffusion on the Support 258 7.4 Mechanistic Studies on C-SACs 260 7.4.1 Thermocatalysis 261 7.4.1.1 C–H Activation 261 7.4.1.2 Hydrogenation 263 7.4.1.3 CO2 Hydrogenation 263 7.4.1.4 CO Oxidation 264 7.4.1.5 Other Reactions 266 7.4.2 Electrocatalysis 266 7.4.2.1 Water Splitting 266 7.4.2.2 Oxygen Reduction Reaction 269 7.4.2.3 Carbon Dioxide Reduction Reaction 271 7.4.2.4 Other Reactions 273 7.5 Oxide Support Models 273 7.5.1 Aluminum Oxide 274 7.5.2 Cobalt Oxides 279 7.5.3 Cerium Oxide 281 7.5.4 Magnesium Oxides 290 7.5.5 Titanium Dioxide 294 7.5.6 Zirconium Oxide 302 7.5.7 Zinc Oxide 306 7.6 Conclusions 307 Acknowledgements 307 References 307 8 Supported Metal Single Atom Thermocatalysts for Selective Hydrogenation 339 Eva Castillejos, Ana B. Dongil, Inmaculada Rodríguez-Ramos, and Antonio Guerrero-Ruiz 8.1 Introduction 339 8.2 Hydrogenation Reactions Catalyzed by Single-Atom Supported on Carbon Materials 342 8.2.1 Noble-Metal Single-Atom Catalysts 344 8.2.2 Non-Noble Metal Single-Atom Catalysts 348 8.3 Hydrogenation Reactions Catalyzed by SACs Supported on Unreducible Metal Oxides 352 8.4 Hydrogenation Reactions Catalyzed by SACs Supported on Reducible Metal Oxide CeO2 and TiO2 360 8.5 Hydrogenation Reactions Catalyzed by SACs Supported on Metallic Surfaces 367 8.6 Summary and Conclusions 369 Acknowledgments 370 References 371 9 Supported Metal Single-Atom Thermocatalysts for Oxidation Reactions 377 Laurent Piccolo, Stéphane Loridant, and Phillip Christopher 9.1 Introduction 377 9.2 Oxide-Supported Single-Atom Catalysts 378 9.2.1 CO Oxidation 379 9.2.1.1 PGM on Alumina 379 9.2.1.2 PGM on Iron Oxide 382 9.2.1.3 Noble Metals on Titania 383 9.2.1.4 Late Transition Metals on Ceria 386 9.2.1.5 Other Catalysts 390 9.2.1.6 Discussion 391 9.2.2 Preferential CO Oxidation in Hydrogen (PROX) 393 9.2.3 Water–Gas Shift Reaction (WGSR) 394 9.2.4 Total Oxidation of Hydrocarbons 397 9.2.5 Selective Oxidation Reactions 398 9.2.5.1 Early Transition Metals on Oxides 398 9.2.5.2 Late Transition Metals on Oxides 399 9.3 Single-Atom Catalysts Supported on Carbon and Other Materials 401 9.3.1 Carbon and Nitrogen-Hosted SAC 401 9.3.1.1 Selective Oxidation of Alcohols 402 9.3.1.2 Selective Oxidation of Hydrocarbons 402 9.3.1.3 Other Reactions 403 9.3.2 Single-Atom Alloy Catalysts 404 9.4 Summary and Conclusions 404 References 406 10 Supported Metal Single-Atom Thermocatalysts for the Activation of Small Molecules 425 Marcos G. Farpón, Wilson Henao, and Gonzalo Prieto 10.1 Introduction 425 10.2 Methane Conversion on Single-Atom Catalysts 426 10.2.1 Methane Activation: Mechanistic Considerations 428 10.2.2 Methane Conversion on Single-Atom Catalysts: State of the Art and Challenges Ahead 431 10.2.2.1 Oxidative Routes 431 10.2.2.2 Non-oxidative Routes 435 10.3 CO2 Conversion on Single-Atom Catalysts 439 10.3.1 CO2 Activation: Mechanistic Considerations 440 10.3.2 CO2 Hydrogenation on Single-Atom Catalysts: State of the Art, Advantages, and Limitations 442 10.4 CO Conversion on Single-Atom Catalysts 446 10.4.1 CO Activation: Fundamental Considerations 447 10.4.2 Water–Gas-Shift Reaction 449 10.4.3 CO Oxidation 451 10.4.4 Other CO Conversion Catalysis with SACs 455 10.5 Activation and Selective Conversion of Other Small Molecules with SACs 456 10.6 Concluding Remarks 459 Acronym 460 References 461 11 Supported Metal Single Atom Thermocatalysts for C—C, C—Si, and C—B Bond–Forming (Coupling) Reactions and Biomedical Applications 473 Rossella Greco, Marta Mon, and Antonio Leyva–Pérez 11.1 Introduction 473 11.1.1 Chronology of Single-Atom Catalysts 473 11.1.2 Use of SACs in Reactions of Interest for Organic Synthesis and Biomedical Applications 476 11.2 Carbon–Carbon Cross-Coupling Reactions 478 11.3 Hydrosilylation and Hydroboration Reactions 487 11.3.1 Hydrosilylation Reactions 487 11.3.2 Hydroboration Reactions 490 11.4 Biomedical Applications 492 11.5 Summary and Conclusions 495 References 496 12 Supported Metal Single-Atom Thermo-Catalysts for Reforming Reactions 503 Xuan-Huynh Pham and Doan Pham Minh 12.1 Introduction 503 12.2 Supported Metal Single Atoms for Methane Reforming 505 12.2.1 Noble-Metal Single-Atom Catalysts for Methane Reforming 506 12.2.2 Ni-Based Single-Atom Catalysts for Methane Reforming 511 12.2.3 Synergy Between Noble and Transition Metals in SACs 515 12.3 Supported Metal Single Atoms for Hydrocarbon Reforming 517 12.4 Supported Metal Single Atoms for Aqueous-Phase Reforming of Alcohols 522 12.5 Conclusions and Outlook 527 Acknowledgments 528 References 528 13 Electrocatalysis with Single-Metal Atom Sites in Doped Carbon Matrices 531 Tristan Asset, Frédéric Maillard, and Frédéric Jaouen 13.1 Introduction 531 13.2 Synthesis Methods 533 13.2.1 Hard Templating with Silica 537 13.2.2 Soft Templating with Metal–Organic Frameworks 537 13.2.3 Sacrificial Polymers 539 13.2.4 Electrospun Polymer/MOF Composites 540 13.2.5 Synthesis of Metal–N–C SACs Beyond Fe and Co 541 13.2.6 Synthesis of Metal–S–C SACs 542 13.3 Characterization Methods and Structure 542 13.3.1 Structure of metal SA Sites 542 13.3.1.1 Different Fe–NxCy Moieties 543 13.3.1.2 Macroscopic Structure 545 13.3.1.3 Importance of the Carbon Surface and π-Electron Delocalization 545 13.3.2 Characterization Methods Dedicated to Metal–N–C SACs 546 13.4 Applications in Electrocatalysis 550 13.4.1 Oxygen Reduction Reaction 550 13.4.2 CO2 Reduction, N2, and NO3 − Reduction 554 13.5 Stability of Metal–N–C Electrocatalysts 559 13.5.1 Demetallation in the Absence of Carbon Oxidation 559 13.5.2 Changes in the Chemical and Physical Nature of the Metal Ion: Metal–N–C as a Pre-catalyst 561 13.5.3 Protonation of Nitrogen Atoms 562 13.5.4 Carbon Oxidation Reaction 562 13.5.5 Effect of Hydrogen Peroxide 563 13.5.6 Migration and Aggregation of metal SAs 564 13.5.7 Combined Effects 565 13.6 Summary and Conclusions 565 References 567 14 Supported Metal Single-Atom Photocatalysis 583 Bruno F. Machado, Lifeng Liu, Zhipeng Yu, and Joaquim L. Faria 14.1 Introduction 583 14.2 Synthesis and Characterization Methods 585 14.2.1 Synthesis 585 14.2.2 Characterization 587 14.2.3 Effects of Single Atoms in Photocatalysis 587 14.3 SAC Performance in Photocatalysis 589 14.3.1 Photocatalytic Water Splitting 589 14.3.2 Photocatalytic CO2 Reduction 592 14.3.3 Photocatalytic Fixation of Nitrogen 594 14.3.4 Photocatalytic Production of H2O2 with Environmental Significance 594 14.3.5 Photocatalytic Organic Synthesis 595 14.4 SACs for Photoelectrocatalysis 596 14.4.1 Photoelectrocatalytic Hydrogen Evolution 597 14.4.2 Photoelectrocatalytic Oxygen Evolution 599 14.4.3 Photoelectrocatalytic Carbon Dioxide Reduction and Nitrogen Reduction 601 14.5 Summary and Outlook 603 Acknowledgments 604 References 605 15 Supported Double and Triple Metal Atom Catalysts 613 Zhiwen Chen, Chandra V. Singh, and Qing Jiang 15.1 Introduction 613 15.2 Synthesis Routes 615 15.2.1 High Metal Atom Loading 615 15.2.2 Further SAC Grafting 615 15.2.3 Preselected Precursors for Double or Triple Atom Active Centers 615 15.2.4 Preselected Supports for Supporting DACs or TACs 617 15.2.4.1 Metallic Supports 617 15.2.4.2 Oxide Supports 617 15.2.4.3 2D Material Supports 619 15.2.4.4 Highly Porous and Specific Supports 620 15.3 Characterization Techniques 621 15.4 Applications 624 15.4.1 Thermocatalysis 624 15.4.1.1 CO Oxidation 624 15.4.1.2 Ammonia Synthesis 625 15.4.1.3 CO2 Reduction Reaction 626 15.4.1.4 Other Chemical Reactions 627 15.4.2 Electrocatalysis 628 15.4.2.1 Hydrogen Evolution Reaction (HER) 628 15.4.2.2 Oxygen Evolution Reaction (OER) 628 15.4.2.3 Oxygen Reduction Reaction (ORR) 630 15.4.2.4 CO2 Reduction Reaction (CO2RR) 632 15.4.2.5 Nitrogen Reduction Reaction (NRR) 634 15.4.3 Photocatalysis 636 15.5 Current Challenges and Future Outlook 637 15.6 Summary and Conclusions 637 Acknowledgments 638 References 638 Index 645

About the Author :
Philippe Serp is Professor of Inorganic Chemistry, Toulouse University, France. His research is focused on nanocatalysis and molecular approaches to understand heterogeneous catalysis. He is a recipient of the Catalysis Division Award and Industrial Chemistry Division Award of the French Chemical Society. He has authored more than 200 publications, 3 books, and 19 patents. Doan Pham Minh is Associate Professor, IMT Mines Albi, France. Since 2020, he is Deputy Director of the RAPSODEE Research Center. He investigates the valorization of biomass, bio-wastes, and industrial co-products into energy carriers and useful materials, as well as refractory ceramics and functional materials applied in thermo-conversion processes, catalytic processes, and thermal energy storage. He has published 90 articles, 9 book chapters, and 3 patents.


Best Sellers


Product Details
  • ISBN-13: 9783527830152
  • Publisher: John Wiley and Sons Ltd
  • Publisher Imprint: Wiley-VCH Verlag GmbH
  • Language: English
  • ISBN-10: 3527830154
  • Publisher Date: 09 Feb 2022
  • Binding: Digital (delivered electronically)
  • No of Pages: 688


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Supported Metal Single Atom Catalysis
John Wiley and Sons Ltd -
Supported Metal Single Atom Catalysis
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Supported Metal Single Atom Catalysis

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!