Vertical External Cavity Surface Emitting Lasers - Bookswagon
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Other technologies and applied sciences > Applied optics > Laser technology and holography > Vertical External Cavity Surface Emitting Lasers: VECSEL Technology and Applications
Vertical External Cavity Surface Emitting Lasers: VECSEL Technology and Applications

Vertical External Cavity Surface Emitting Lasers: VECSEL Technology and Applications


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Vertical External Cavity Surface Emitting Lasers Provides comprehensive coverage of the advancement of vertical-external-cavity surface-emitting lasers Vertical-external-cavity surface-emitting lasers (VECSELs) emit coherent light from the infrared to the visible spectral range with high power output. Recent years have seen new device developments – such as the mode-locked integrated (MIXSEL) and the membrane external-cavity surface emitting laser (MECSEL) – expand the application of VECSELs to include laser cooling, spectroscopy, telecommunications, biophotonics, and laser-based displays and projectors. In Vertical External Cavity Surface Emitting Lasers: VECSEL Technology and Applications, leading international research groups provide a comprehensive, fully up-to-date account of all fundamental and technological aspects of vertical external cavity surface emitting lasers. This unique book reviews the physics and technology of optically-pumped disk lasers and discusses the latest developments of VECSEL devices in different wavelength ranges. Topics include OP-VECSEL physics, continuous wave (CW) lasers, frequency doubling, carrier dynamics in SESAMs, and characterization of nonlinear lensing in VECSEL gain samples. This authoritative volume: Summarizes new concepts of DBR-free and MECSEL lasers for the first time Covers the mode-locking concept and its application Provides an overview of the emerging concept of self-mode locking Describes the development of next-generation OPS laser products Vertical External Cavity Surface Emitting Lasers: VECSEL Technology and Applications is an invaluable resource for laser specialists, semiconductor physicists, optical industry professionals, spectroscopists, telecommunications engineers and industrial physicists.

Table of Contents:
Preface xiii Part I Continuous wave VECSEL 1 1 History of Optically Pumped Semiconductor Lasers – VECSELs 3 Mark E. Kuznetsov 1.1 Introduction 3 1.2 OPS-VECSELs: Concept and History 4 1.3 Micracor 8 1.4 OPSL Development at Micracor: First Steps 11 1.5 OPS Development at Micracor: Pushing Forward 14 1.6 OPS Development at Micracor: Final Chapter 16 1.7 VECSELs beyond Micracor 20 References 22 2 VECSELs in the Wavelength Range 1.18–1.55 𝛍m 27 Antti Rantamäki and Mircea Guina 2.1 Introduction 27 2.2 Overview of GaAs-based Gain Mirror Technologies for Long-wavelength Infrared VECSELs 28 2.2.1 InGaAs QWs 28 2.2.2 GaInNAs QWs 28 2.2.3 InAs QDs 30 2.2.4 GaAsSb QWs 31 2.3 Overview of InP-based Gain Mirror Technologies for Long-wavelength Infrared VECSELs 32 2.3.1 Monolithic InP-based DBRs 32 2.3.2 Dielectric and Metamorphic DBRs 33 2.3.3 Semiconductor-dielectric-metal Compound Mirrors 34 2.3.4 Wafer-bonded GaAs-based DBRs 37 2.3.4.1 DirectWafer Bonding 39 2.3.4.2 Low Temperature Bonding 44 2.3.5 Gain Structures in Transmission 47 2.4 Conclusion 50 References 50 3 Single-frequency and High Power Operation of 2–3 Micron VECSEL 63 Marcel Rattunde, Peter Holl, and Joachim Wagner 3.1 Introduction 63 3.2 Semiconductor Lasers for the MIR Range 64 3.3 III-Sb Material System 66 3.4 2–3 μm VECSEL Design 68 3.4.1 Standard Barrier Pumped Structures 68 3.4.2 In-well Pumping 69 3.4.3 Low Quantum Deficit Barrier Pumping 70 3.5 Mounting Technologies 72 3.5.1 Intracavity Heatspreader 74 3.5.2 Thin Device 76 3.5.3 Double-sided Heatspreader 77 3.6 Single-frequency Operation (SFO) of 2–3 μm VECSEL 78 3.6.1 Key Parameters for Single-Frequency Operation 79 3.6.2 SFO with Intracavity Heatspreader 81 3.6.2.1 Laser Cavity Setup 82 3.6.2.2 Wavelength Tuning 83 3.6.2.3 Emission Linewidth 85 3.6.2.4 Active Stabilization and Influence of Sampling Time 88 3.6.2.5 Conclusion 90 3.6.3 SFO withWedged Heatspreader 91 3.6.4 SFO with Microcavity VECSELs 92 3.6.5 SFO without Intracavity Heatspreader 94 3.7 Conclusion 99 References 101 4 Highly Coherent Single-Frequency Tunable VeCSELs: Concept, Technology, and Physical Study 109 Mikhael Myara 4.1 Introduction: Lasers for Applications 109 4.2 The “Ideal” Laser 111 4.3 Toward Single-Mode Operation 113 4.4 Toward High Coherence 118 4.5 The VeCSEL in the State of the Art 121 4.6 Highly Coherent, Tunable VeCSEL Design 122 4.7 Limits and Solutions 125 4.8 Highly Coherent, Tunable VeCSEL: Main Characteristics 127 4.9 Ultrahigh-Purity Single-mode Operation 129 4.10 Spatial Coherence 131 4.11 Time Domain Coherence and Noise 131 4.11.1 Noise in Photonics: Basics 131 4.11.2 Intensity Noise of a VeCSEL 135 4.11.3 Phase Noise, Frequency Noise, and Linewidth of a VeCSEL 136 4.12 Conclusion 139 Acknowledgements 140 References 140 5 Terahertz Metasurface Quantum Cascade VECSELs 145 Benjamin S. Williams and Luyao Xu 5.1 Introduction 145 5.1.1 Waveguides for THz QC-Lasers 146 5.1.2 Overview of Metasurface QC-VECSEL Concept 148 5.2 Metasurface Design 149 5.3 QC-VECSEL Model 152 5.3.1 Confinement Factor 156 5.3.2 Metasurface and Cavity Optimization 157 5.4 THz QC-VECSEL Performance: Power, Efficiency, and Beam Quality 159 5.4.1 Effect of Metasurface on Spectrum 160 5.4.2 Effect of Output Coupler 161 5.4.3 Focusing Metasurface VECSEL 162 5.4.4 Intra-cryostat Cavity QC-VECSEL 165 5.5 Polarization Control in QC-VECSELs 166 5.6 Conclusion 169 References 170 6 DBR-free Optically Pumped Semiconductor Disk Lasers 175 Alexander R. Albrecht, Zhou Yang, and Mansoor Sheik-Bahae 6.1 Introduction 175 6.2 DBR-free Semiconductor Disk Lasers 176 6.2.1 Opportunities and Advantages 177 6.2.2 Thermal Analysis 178 6.2.3 Longitudinal Mode Structure and Broadband Tunability 180 6.3 Device Fabrication 182 6.4 DBR-free SDL Implementation 185 6.4.1 High Power Operation 185 6.4.2 Broad Tunability 187 6.4.3 Wafer-scale Processing 189 6.5 Novel Concepts 189 6.6 Conclusions 192 References 193 7 Optically Pumped Red-Emitting AlGaInP-VECSELs and the MECSEL Concept 197 Hermann Kahle, Michael Jetter, and Peter Michler 7.1 Introduction 197 7.2 Direct Red-Emitting AlGaInP-VECSELs and Second-Harmonic Generation 199 7.2.1 GaInP QuantumWells and the AlGaInP Material System 199 7.2.2 GaInP QuantumWell VECSELs: A Comparison 201 7.2.2.1 Architecture of the Semiconductor Structures 202 7.2.2.2 Experimental Setup 203 7.2.2.3 Characterization Results 204 7.2.2.4 Internal Efficiency 204 7.2.3 Power Scaling via QuantumWell and Multi-Pass Pumping 208 7.2.3.1 QuantumWell Pumping 208 7.2.3.2 Multi-Pass Pumping 210 7.2.4 Second-Harmonic Generation into the UV-A Spectral Range 211 7.3 The Membrane External-Cavity Surface-Emitting Laser (MECSEL) 212 7.3.1 The Semiconductor Active Region Membrane 213 7.3.2 MECSEL Setup 215 7.3.3 MECSEL Characterization 216 7.3.3.1 Output Power Measurements 216 7.3.3.2 Beam Profile and Beam Quality Factor 218 7.3.3.3 Spectra 218 7.4 Conclusions 221 References 221 Part II Mode-Locked VECSEL 229 8 Recent Advances in Mode-Locked Vertical-External-Cavity Surface-Emitting Lasers 231 Anne C. Tropper 8.1 Introduction 231 8.1.1 Ultrafast Lasers 232 8.1.2 Ultrafast Semiconductor Lasers; Diodes, VECSELs, and MIXSELs 233 8.2 Ultrafast Pulse Formation in a Surface-Emitting Semiconductor Laser 235 8.2.1 Surface-Emitting Gain Chip Design 235 8.2.2 Gain Filtering 238 8.2.3 Gain Saturation and Recovery 239 8.2.4 Saturable Absorbers for ML-VECSELs and MIXSELs 241 8.3 Performance of Passively Mode-Locked Semiconductor Lasers 244 8.3.1 Pulse Duration 244 8.3.2 Pulse Repetition Rate 246 8.3.3 Mode-Locked VECSELs: Visible to Mid-Infrared 248 8.3.4 Simulation and Modeling 249 8.3.5 Noise 251 8.4 Applications 252 8.4.1 Biological Imaging 252 8.4.2 Quantum Optics 253 8.4.3 Supercontinuum Generation and Frequency Combs 253 8.4.4 Terahertz Imaging and Spectroscopy 254 8.5 Summary and Outlook 255 References 256 9 Ultrafast Nonequilibrium Carrier Dynamics in Semiconductor Laser Mode-Locking 267 I. Kilen, J. Hader, S.W. Koch, and J.V. Moloney 9.1 Introduction 267 9.2 Background Theory 269 9.2.1 Pulse Propagation 269 9.2.2 Microscopic Theory 273 9.3 Domain Setup/Modeling 277 9.3.1 The VECSEL Cavity 277 9.3.2 The Gain Region 278 9.3.3 The Relaxation Rates and the Round Trip Time 280 9.3.4 Noise Buildup to Pulse 281 9.4 Numerical Results 282 9.4.1 Single-Pass Investigation of QWs and SAMs on the Order of Second Born–Markov Approximation 282 9.4.1.1 Inverted QuantumWell 282 9.4.1.2 Saturable Absorber 285 9.4.2 Mode-Locked VECSELs 288 9.4.2.1 Gain, Absorption, and Dispersion 288 9.4.2.2 Pulse Buildup and Initial Conditions 290 9.4.2.3 Self-Phase Modulation from QWs 290 9.4.2.4 Mode-Locked Pulse Family 291 9.4.2.5 Influence of Loss on the Mode-Locked Pulse 294 9.4.2.6 Limits on the Shortest Possible Pulse and the Hysteresis Effect 296 9.5 Outlook 299 References 300 10 Mode-Locked AlGaInP VECSEL for the Red and UV Spectral Range 305 Roman Bek, Michael Jetter, and Peter Michler 10.1 Introduction 305 10.2 Epitaxial Layer Design of AlGaInP-SESAM Structures 306 10.2.1 QuantumWell SESAMs 306 10.2.2 Quantum Dot SESAMs 307 10.3 Temporal Response of AlGaInP SESAMs 307 10.4 Cavity Designs 309 10.5 Characterization Methods 310 10.6 Mode-Locking Results 311 10.6.1 QuantumWell Mode-Locked AlGaInP VECSELs 311 10.6.1.1 High Output Power 311 10.6.1.2 Femtosecond Operation 312 10.6.2 Quantum Dot Mode-Locked AlGaInP VECSELs 314 10.7 Second Harmonic Generation into the UV Spectral Range 315 10.8 Summary and Outlook 317 References 318 11 Colliding Pulse Mode-locked VECSEL 321 Alexandre Laurain 11.1 Introduction 321 11.2 Principle of Colliding Pulse Modelocking 322 11.3 Requirements for Stable Colliding Pulse Modelocking 324 11.3.1 Pulse Timing 324 11.3.2 Gain Recovery and Pumping Rate 324 11.3.3 Polarization 326 11.3.4 ModeWaist and Saturation Fluence 326 11.4 Design of an Ultrafast CPM VECSEL 327 11.4.1 The Optical Cavity 327 11.4.2 The Gain Structure 328 11.4.3 The SESAM 333 11.5 Modelocking Results 335 11.5.1 Robustness of the Modelocking Regime 335 11.5.2 Cross Correlation of the Output Beams 336 11.5.3 Pulse Duration Optimization 338 11.5.4 Multipulse Regime 340 11.6 Pulse Interactions in the Saturable Absorber 341 11.6.1 Field Intensity Distribution 341 11.6.2 Saturable Absorption Model 343 11.6.3 Dynamics of the Carrier Density Distribution 345 11.6.4 Absorption Losses and Pulse Shaping 347 11.6.5 Saturation Fluence of the Absorber 349 11.6.6 Power Balance in CPM Operation 350 11.7 Summary and Outlook 352 Acknowledgments 353 References 353 12 Self-Mode-Locked Semiconductor Disk Lasers 357 Arash Rahimi-Iman 12.1 Introduction 357 12.2 Mode-Locking Techniques for Optically Pumped SDLs at a Glance 358 12.3 History of Saturable-Absorber-Free Pulsed VECSELs 360 12.3.1 Self-Mode-Locked Optically Pumped VECSELs 360 12.3.1.1 Once Upon a Time – Beyond Magic 361 12.3.1.2 Mode Competition – A Struggle for Acceptance 363 12.3.1.3 More Than a Flash in the Pan – TriggeredWave of Results 364 12.3.2 Harmonic Self-Mode-Locking 366 12.3.3 Self-Mode-Locking Quantum-Dot VECSEL 368 12.3.4 SML Cavity Configurations 369 12.3.5 SML VECSEL at OtherWavelengths 371 12.4 Overview on SESAM-Free Mode-Locking Achievements 373 12.4.1 Spotlight on SML VECSELs 373 12.4.1.1 Pulse Duration 373 12.4.1.2 Peak Power 374 12.4.1.3 Repetition Rate 375 12.4.2 SESAM-Free Alternatives to SML VECSEL 375 12.4.2.1 Graphene or Carbon Nanotube Saturable Absorber Mode-Locked VECSELs 375 12.4.2.2 SESAM-Free VECSEL Design with Intracavity Kerr Medium 375 12.5 Investigations into the Mechanisms and Outlook 376 12.5.1 First Studies Concerning the Mechanisms Behind SML 376 12.5.2 Z-Scan Measurements of the Nonlinear Refractive Index in a VECSEL Chip 377 12.5.3 Applications and Expected Advances 380 Acknowledgments 381 References 382 Index 387 

About the Author :
Michael Jetter is Leader of the Epitaxy and Laser Group, Institute for Semiconductor Optics and Functional Interfaces, University of Stuttgart, Germany. He is expert in III-V semiconductor epitaxy and semiconductor lasers. Peter Michler is Professor and Head of the Institute for Semiconductor Optics and Functional Interfaces, University of Stuttgart, Germany. His research concentrates on quantum dots, non-classical light sources and semiconductor lasers, semiconductor based quantum optics and photonic quantum technologies.


Best Sellers


Product Details
  • ISBN-13: 9783527807970
  • Publisher: John Wiley and Sons Ltd
  • Publisher Imprint: Wiley-VCH Verlag GmbH
  • Language: English
  • Sub Title: VECSEL Technology and Applications
  • ISBN-10: 3527807977
  • Publisher Date: 16 Sep 2021
  • Binding: Digital (delivered electronically)
  • No of Pages: 416


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Vertical External Cavity Surface Emitting Lasers: VECSEL Technology and Applications
John Wiley and Sons Ltd -
Vertical External Cavity Surface Emitting Lasers: VECSEL Technology and Applications
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Vertical External Cavity Surface Emitting Lasers: VECSEL Technology and Applications

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!