Atomic Force Microscopy in Liquid
Home > Mathematics and Science Textbooks > Science: general issues > Scientific equipment, experiments and techniques > Atomic Force Microscopy in Liquid: Biological Applications
Atomic Force Microscopy in Liquid: Biological Applications

Atomic Force Microscopy in Liquid: Biological Applications


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

About 40 % of current atomic force microscopy (AFM) research is performed in liquids, making liquid-based AFM a rapidly growing and important tool for the study of biological materials. This book focuses on the underlying principles and experimental aspects of AFM under liquid, with an easy-to-follow organization intended for new AFM scientists. The book also serves as an up-to-date review of new AFM techniques developed especially for biological samples. Aimed at physicists, materials scientists, biologists, analytical chemists, and medicinal chemists. An ideal reference book for libraries. From the contents: Part I: General Atomic Force Microscopy * AFM: Basic Concepts * Carbon Nanotube Tips in Atomic Force Microscopy with * Applications to Imaging in Liquid * Force Spectroscopy * Atomic Force Microscopy in Liquid * Fundamentals of AFM Cantilever Dynamics in Liquid * Environments * Single-Molecule Force Spectroscopy * High-Speed AFM for Observing Dynamic Processes in Liquid * Integration of AFM with Optical Microscopy Techniques Part II: Biological Applications * DNA and Protein-DNA Complexes * Single-Molecule Force Microscopy of Cellular Sensors * AFM-Based Single-Cell Force Spectroscopy * Nano-Surgical Manipulation of Living Cells with the AFM

Table of Contents:
PART I: General Atomic Force Microscopy AFM: BASIC CONCEPTS Atomic Force Microscope: Principles Piezoelectric Scanners Tips and Cantilevers Force Detection Methods for Imaging in Liquids AFM Operation Modes: Contact, Jumping/Pulsed, Dynamic The Feedback Loop Image Representation Artifacts and Resolution Limits CARBON NANOTUBE TIPS IN ATOMIC FORCE MICROSCOPY WITH APPLICATIONS TO IMAGING IN LIQUID Introduction Fabrication of CNT AFM Probes Chemical Functionalization Mechanical Properties of CNTs in Relation to AFM Applications Dynamics of CNT Tips in Liquid Performance and Resolution of CNT Tips in Liquid FORCE SPECTROSCOPY Introduction Measurement of Force Curves Measuring Surface Forces by the Surface Force Apparatus Forces between Macroscopic Bodies Theory of DLVO Forces between Two Surfaces Van der Waals Forces - the Hamaker Constant Electrostatic Force between Surfaces in a Liquid Spatially Resolved Force Spectroscopy Force Spectroscopy Imaging of Single DNA Molecules Solvation Forces Hydrophobic Forces Steric Forces Conclusive Remarks DYNAMIC-MODE AFM IN LIQUID Introduction Operation Principles Instrumentation Quantitative Force Measurements High-Resolution Imaging Summary and Future Prospects FUNDAMENTALS OF AFM CANTILEVER DYNAMICS IN LIQUID ENVIRONMENTS Introduction Review of Fundamentals of Cantilever Oscillation Hydrodynamics of Cantilevers in Liquids Methods of Dynamic Excitation Dynamics of Cantilevers Interacting with Samples in Liquids Outlook SINGLE-MOLECULE FORCE SPECTROSCOPY Introduction AFM-SMFS Principles Dynamics of Adhesion Bonds Specific versus Other Interactions Steered Molecular Dynamics Simulations Biological Findings Using AFM-SMFS Concluding Remarks HIGH-SPEED AFM FOR OBSERVING DYNAMIC PROCESSES IN LIQUID Introduction Theoretical Derivation of Imaging Rate and Feedback Bandwidth Techniques Realizing High-Speed Bio-AFM Substrate Surfaces Imaging of Dynamic Molecular Processes Future Prospects of High-Speed AFM Conclusion INTEGRATION OF AFM WITH OPTICAL MICROSCOPY TECHNIQUES Introduction Combining AFM and IRM-TIRF Combining AFM and FRET FRET-AFM Sample Preparation and Experiment Setup PART II: Biological Applications AFM IMAGING IN LIQUID OF DNA AND PROTEIN-DNA COMPLEXES Overview: the Study of DNA at Nanoscale Resolution Sample Preparation for AFM Imaging of DNA and Protein-DNA Complexes AFM of DNA in Aqueous Solutions AFM Imaging of Alternative DNA Conformations Dynamics of Protein - DNA Interactions DNA Condensation Conclusions STABILITY OF LIPID BILAYERS AS MODEL MEMBRANES: ATOMIC FORCE MICROSCOPY AND SPECTROSCOPY APPROACH Biological Membranes Mechanical Characterization of Lipid Membranes Future Perspectives SINGLE-MOLECULE ATOMIC FORCE MICROSCOPY OF CELLULAR SENSORS Introduction Methods Probing Single Yeast Sensors in Live Cells Conclusions A FM-BASED SINGLE-CELL FORCE SPECTROSCOPY Introduction Cantilever Choice Cantilever Functionalization Cantilever Calibration Cell Attachment to the AFM Cantilever Recording a Force - Distance Curve Processing F - D Curves Quantifying Overall Cell Adhesion by SCFS SFCS with Single-Molecule Resolution Dynamic Force Spectroscopy Measuring Cell - Cell Adhesion Conclusions and Outlook NANOSURGICAL MANIPULATION OF LIVING CELLS WITH THE AFM Introduction: Mechanical Manipulation of Living Cells Basic Mechanical Properties of Proteins and Cells Hole Formation on the Cell Membrane Extraction of mRNA from Living Cells DNA Delivery and Gene Expression Mechanical Manipulation of Intracellular SFs Cellular Adaptation to Local Stresses Application of Carbon Nanotube Needles Use of Fabricated AFM Probes with a Hooking Function Membrane Protein Extraction Future Prospects

About the Author :
Arturo M Baro has spent most of his career at the Universidad Autonoma of Madrid and has been working in the fi eld of Surface Physics and Nanoscience. In 1983, he spent one year at the IBM Research Lab in Zurich where he worked with Professors Rohrer and Binnig, who discovered STM. He is the author of 160 publications with a citation index h = 38. In 1985, he founded the company NANOTEC ELECTRONICA, S.L., which is dedicated to the fabrication and sale of AFM machines. He has been honored with the research prizes from the Humboldt Foundation. Ronald G. Reifenberger has been on the faculty at Purdue University, W. Lafayette, USA since 1978. Following his PhD in physics from the University of Chicago, he was a post-doctoral fellow at the University of Toronto, Canada. His nanophysics laboratory at Purdue uses innovative experimental techniques to examine nanoscale properties of matter. His research focus since 1985 has been primarily scanning probe microscopy. Reifenberger is currently the director of the Kevin G. Hall Nanometrology Laboratory in the Birck Nanotechnology Center at Purdue.


Best Sellers


Product Details
  • ISBN-13: 9783527649839
  • Publisher: John Wiley and Sons Ltd
  • Publisher Imprint: Wiley-VCH Verlag GmbH
  • Language: English
  • Sub Title: Biological Applications
  • ISBN-10: 3527649832
  • Publisher Date: 24 Jan 2012
  • Binding: Digital (delivered electronically)
  • No of Pages: 402


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Atomic Force Microscopy in Liquid: Biological Applications
John Wiley and Sons Ltd -
Atomic Force Microscopy in Liquid: Biological Applications
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Atomic Force Microscopy in Liquid: Biological Applications

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!