Handbook of Optical Systems, Volume 2
Home > Mathematics and Science Textbooks > Physics > Handbook of Optical Systems, Volume 2: Physical Image Formation(Gross/Optical Systems V1-V6 special prices until 6V ST published (VCH))
Handbook of Optical Systems, Volume 2: Physical Image Formation(Gross/Optical Systems V1-V6 special prices until 6V ST published (VCH))

Handbook of Optical Systems, Volume 2: Physical Image Formation(Gross/Optical Systems V1-V6 special prices until 6V ST published (VCH))


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Herbert Gross, born in 1955, joined Carl Zeiss in 1982 after finishing his physics degree as specialist for optical design. Since 1995 he has been working as head of the department of optical design, while also teaching as a lecturer in Aalen and Lausanne. The new handbook is an intuitive, didactically elegant approach to the subject of optical systems and is not competed by any other work on the market. The selected board of authors, all reputed industrial experts, guarantee the timeliness of the well coordinated, coherent chapters. The second volume presents a more rigorous physical description of the image formation in optical systems on the basis of first principles. Starting with wave equation and the theory of diffraction, readers are introduced in detail to the Fourier theory of optics, since this is a necessary assumption for an understanding of the finite resolution of optical systems, the basic optical quality criteria, the imaging in three dimensions, the influence of the illumination and the coherence and polarization properties of the light source. In particular, the connection between the geometrical and the wave optical models are explained and readers are able to understand the well-known simulation algorithms used in the calculation of the exact properties of modern optical systems.

Table of Contents:
Vol 2 : Physical Image Formation Introduction 17 The Wave Equation 18 Scalar Diffraction 19 Interference and Coherence 20 The Geometrical Optical Description and Incoherent Imaging 21 The Abbe Theory of Imaging 22 Coherence Theory of Optical Imaging 23 Three Dimensional Imaging 24 Image Examples of Selected Objects 25 Special System Examples and Applications 26 Polarization 27 Vector Diffraction 28 Polarization and Optical Imaging A1 Mathematical Appendix

About the Author :
Wolfgang Singer Wolfgang Singer was born in 1964 and studied Physics at the University of Erlangen. He received his Ph.D. at the Institute of Applied Optics in 1995 with a thesis on microoptics, propagation theory and tomography. He spent his post doctorate at the Institute de Microtechnique in Neuchatel, where he developed diffractive diffusors for DUV illumination systems. From 1996 to 1998, he was assistant at the Institute of Applied Optics at the University of Stuttgart. Since 1998, he has been with Carl Zeiss SMT AG, working in the department of optical design and simulation for lithographic optics. His work includes tolerancing of objectives and the design of illumination systems of EUV systems. He became principal scientist and was engaged at the scientific training programme at Carl Zeiss. His special interests are imaging theory and partial coherence, and he has written his own simulation software. He holds 50 patents and has published about 30 papers and contributions to textbooks. Michael Totzeck Michael Totzeck was born in 1961. He received his diploma degree in Physics in 1987 and his Ph.D. in 1989, both from the Technical University of Berlin, where he also did his habilitation in 1995. In 1991 he was awarded the Carl-Ramsauer-Award of the AEG AG for his Ph.D thesis on near field diffraction. From 1995 to 2002, he headed a group on high resolution microscopy at the Institute of Applied Optics in Stuttgart, working by experimental, theoretical and numerical means on optical metrology at the resolution limit. He has been with the Carl Zeiss SMT AG since 2002, working in the department for optical design. His current research topic is electromagnetic imaging with high-NA optical systems. He has published 40 papers on diffraction theory, near-field optics, high-resolution microscopy, interferometry, metrology, optical singularities, polarization-optics and physics education. Herbert Gross Herbert Gross was born in 1955. He studied Physics at the University of Stuttgart and joined Carl Zeiss in 1982. Since then he has been working in the department of optical design. His special areas of interest are the development of simulation methods, optical design software and algorithms, the modelling of laser systems and simulation of problems in physical optics, and the tolerancing and the measurement of optical systems. Since 1995, he has been heading the central optical design department at Zeiss. He served as a lecturer at the University of Applied Sciences at Aalen and at the University of Lausanne, and gave seminars for the Photonics Net of Baden Württemberg as well as several company internal courses. In 1995, he received his PhD at the University of Stuttgart on a work on the modelling of laser beam propagation in the partial coherent region. He has published several papers and has given many talks at conferences.

Review :
"... a compendium of information that would be of interest to optical engineering, physicists and others." American Reference Books Annual "The first two out of six volumes of the series Handbook of optical systems comes with more than 800 fullcoloured illustrations and images for an easy understanding of complex optical systems. [...] This series can be used by professionals as a comprehensive reference as well as an introduction for beginners in technicaloptics." Colloid Polym Sci


Best Sellers


Product Details
  • ISBN-13: 9783527403783
  • Publisher: Wiley-VCH Verlag GmbH
  • Publisher Imprint: Wiley-VCH Verlag GmbH
  • Height: 2460 mm
  • No of Pages: 714
  • Series Title: Gross/Optical Systems V1-V6 special prices until 6V ST published (VCH)
  • Sub Title: Physical Image Formation
  • Width: 400 mm
  • ISBN-10: 3527403787
  • Publisher Date: 12 Aug 2005
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Spine Width: 1860 mm
  • Weight: 1486 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Handbook of Optical Systems, Volume 2: Physical Image Formation(Gross/Optical Systems V1-V6 special prices until 6V ST published (VCH))
Wiley-VCH Verlag GmbH -
Handbook of Optical Systems, Volume 2: Physical Image Formation(Gross/Optical Systems V1-V6 special prices until 6V ST published (VCH))
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Handbook of Optical Systems, Volume 2: Physical Image Formation(Gross/Optical Systems V1-V6 special prices until 6V ST published (VCH))

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!