Molecular-Scale Electronics
Home > Science, Technology & Agriculture > Mechanical engineering and materials > Molecular-Scale Electronics: Concept, Fabrication and Applications
Molecular-Scale Electronics: Concept, Fabrication and Applications

Molecular-Scale Electronics: Concept, Fabrication and Applications

|
     0     
5
4
3
2
1




Out of Stock


Notify me when this book is in stock
About the Book

Provides in-depth knowledge on molecular electronics and emphasizes the techniques for designing molecular junctions with controlled functionalities This comprehensive book covers the major advances with the most general applicability in the field of molecular electronic devices. It emphasizes new insights into the development of efficient platform methodologies for building such reliable devices with desired functionalities through the combination of programmed bottom-up self-assembly and sophisticated top-down device fabrication. It also helps to develop an understanding of the device fabrication processes and the characteristics of the resulting electrode-molecule interface. Beginning with an introduction to the subject, Molecular-Scale Electronics: Concept, Fabrication and Applications offers full chapter coverage on topics such as: Metal Electrodes for Molecular Electronics; Carbon Electrodes for Molecular Electronics; Other Electrodes for Molecular Electronics; Novel Phenomena in Single-Molecule Junctions; and Supramolecular Interactions in Single-Molecule Junctions. Other chapters discuss Theoretical Aspects for Electron Transport through Molecular Junctions; Characterization Techniques for Molecular Electronics; and Integrating Molecular Functionalities into Electrical Circuits. The book finishes with a summary of the primary challenges facing the field and offers an outlook at its future. * Summarizes a number of different approaches for forming molecular-scale junctions and discusses various experimental techniques for examining these nanoscale circuits in detail * Gives overview of characterization techniques and theoretical simulations for molecular electronics * Highlights the major contributions and new concepts of integrating molecular functionalities into electrical circuits * Provides a critical discussion of limitations and main challenges that still exist for the development of molecular electronics * Suited for readers studying or doing research in the broad fields of Nano/molecular electronics and other device-related fields Molecular-Scale Electronics is an excellent book for materials scientists, electrochemists, electronics engineers, physical chemists, polymer chemists, and solid-state chemists. It will also benefit physicists, semiconductor physicists, engineering scientists, and surface chemists.

Table of Contents:
1 Introduction 1 References 4 2 Metal Electrodes for Molecular Electronics 7 2.1 Single-Molecule Junctions 7 2.1.1 Scanning Probe Microscopy Break Junctions 7 2.1.1.1 Beyond Traditional SPM Break Junctions 13 2.1.1.2 Applications of SPM Beyond Electron Transport 16 2.1.2 Mechanically Controllable Break Junctions 19 2.1.2.1 Work Principle and Advantages 19 2.1.2.2 MCBJ Chip Fabrication 23 2.1.2.3 MCBJ Applications 25 2.1.3 Electromigration Breakdown Junctions 32 2.1.3.1 Device Fabrication 33 2.1.3.2 Gap Size Control 34 2.1.3.3 Electromigration Applications 37 2.1.4 Electrochemical Deposition Junctions 40 2.1.5 Surface-Diffusion-Mediated Deposition Junctions 43 2.2 Ensemble Molecular Junctions 45 2.2.1 Lift-and-Float Approach 45 2.2.2 Liquid Metal Contact 47 2.2.3 Nanopore and Nanowell 50 2.2.4 On-Wire Lithography 52 2.2.5 Transfer Printing Techniques 54 2.2.6 Self-Aligned Lithography 60 2.2.7 Buffer Interlayer-Based Junction 62 2.2.8 On-Edge Molecular Junction 65 2.2.9 Suspended-Wire Molecular Junctions 68 References 71 3 Carbon Electrodes for Molecular Electronics 93 3.1 Carbon Nanotube-Based Electrodes 93 3.1.1 Electrical Breakdown 94 3.1.2 Lithography-Defined Oxidative Cutting 98 3.2 Graphene-Based Electrodes 102 3.2.1 Electroburning 103 3.2.2 Dash-Line Lithography 103 3.3 Other Carbon-Based Electrodes 107 References 109 4 Other Electrodes for Molecular Electronics 113 4.1 Silicon-Based Electrodes 113 4.2 Polymer-Based Electrodes 116 References 117 5 Novel Phenomena in Single-Molecule Junctions 119 5.1 Quantum Interference 119 5.1.1 Prediction of QI Effects 119 5.1.2 Signature of Quantum Interference 120 5.1.3 Different Transport Pathways 123 5.1.4 Chemical Design to Tune Quantum Interference 124 5.2 Coulomb Blockade and Kondo Resonance 125 5.3 Thermoelectricity 128 5.4 Electronic–Plasmonic Conversion 130 References 132 6 Supramolecular Interactions in Single-Molecule Junctions 137 6.1 Hydrogen Bonds 137 6.2 π–π Stacking Interactions 140 6.3 Host–Guest Interactions 144 6.4 Charge-Transfer Interactions 149 References 152 7 Characterization Techniques for Molecular Electronics 157 7.1 Inelastic Electron Tunneling Spectroscopy 157 7.1.1 History and Background 158 7.1.2 IETS Measurement 160 7.1.3 IETS Applications 163 7.2 Temperature–Length–Variable Transport Measurement 166 7.3 Noise Spectroscopy 170 7.3.1 Thermal Noise and Shot Noise 171 7.3.2 Generation–Recombination and Flicker Noise 172 7.3.3 Noise Spectroscopy Measurements 173 7.3.4 Application of Noise Spectroscopy 174 7.4 Optical and Optoelectronic Spectroscopy 180 7.4.1 Raman Spectroscopy 180 7.4.2 Ultraviolet–Visible Spectroscopy 182 7.4.3 X-ray Photoelectron Spectroscopy 183 7.4.4 Ultraviolet Photoelectron Spectroscopy 184 7.5 Data Characterization Approaches 185 7.5.1 Transition Voltage Spectroscopy 185 7.5.1.1 TVS Models 185 7.5.1.2 Applications of TVS 188 7.5.2 One Dimensional (1D), Two Dimensional (2D) Histogram and QuB 191 References 195 8 Theoretical Aspects for Electron Transport Through Molecular Junctions 209 8.1 Theoretical Description of the Tunneling Process 209 8.2 Electron Transport Mechanism 212 8.2.1 Coherent Electron Transport Through Molecular Junctions 212 8.2.2 Electron–Phonon Interaction Effects on Transport Mechanism 214 8.3 First-Principles Modeling 215 8.3.1 Introduction to Density Functional Theory 215 8.3.2 Current–Voltage Characteristics Calculations 217 References 221 9 Integrating Molecular Functionalities into Electrical Circuits 225 9.1 Wiring Toward Nanocircuits 225 9.1.1 Backbones as Charge Transport Pathways 226 9.1.1.1 Hydrocarbon Chains 227 9.1.1.2 Metal Containing Compounds 234 9.1.1.3 Porphyrin Arrays 237 9.1.1.4 Carbon Nanotubes 239 9.1.1.5 Biological Wires 241 9.1.2 Conductance of Single Molecules 244 9.1.2.1 Interfacial Coupling 245 9.1.2.2 Energy Level Alignment 250 9.1.2.3 Photon-Assisted Conductance Enhancement 252 9.1.2.4 Molecular Conductance Measurements 256 9.2 Rectification Toward Diodes 258 9.2.1 General Mechanisms for Molecular Rectification 259 9.2.1.1 Aviram–Ratner Model 259 9.2.1.2 Kornilovitch–Bratkovsky–Williams Model 261 9.2.1.3 Datta–Paulsson Model 262 9.2.2 Rectification Stemming from Molecules 262 9.2.2.1 D–σ–A and D–π–A System 262 9.2.2.2 D–A Diblock Molecular System 263 9.2.3 Rectification Stemming from Different Interfacial Coupling 267 9.2.3.1 Different Electrodes 267 9.2.3.2 Anchoring Groups 268 9.2.3.3 Contact Geometry 269 9.2.3.4 Interfacial Distance 269 9.2.4 Other Molecular Rectifiers 270 9.3 Negative Differential Conductance Toward Oscillators 272 9.3.1 Mechanisms for Negative Differential Conductance 272 9.3.2 Measurement of NDC 274 9.3.3 Application of NDC 276 9.4 Gating Toward Molecular Transistors 277 9.4.1 Back Gating for Novel Physical Phenomenon Investigation 277 9.4.2 Side Gating for Electron Transport Control 282 9.4.3 Electrochemical Gating for Efficient Gate Coupling 283 9.5 Switching Toward Memory Devices 284 9.5.1 Switch Stem from Conformation Change 285 9.5.1.1 Electrical Field Induced Switch 285 9.5.1.2 Tunneling Electron (Charge) Triggered Switch 286 9.5.1.3 Mechanical Force Induced Switch 289 9.5.1.4 Chemical Stimuli Triggered Switch (Redox and pH) 290 9.5.1.5 Light-Triggered Switch 293 9.5.2 Electrochemically Gated Switch 297 9.5.3 Spintronics-Based Switch 301 9.5.4 Other Memory Devices 305 9.6 Molecular Computing 306 9.6.1 DNA-Based Computing 306 9.6.2 Molecular Logic Gates 308 9.7 Transduction Toward Molecular Sensors 313 9.7.1 Sensing Based on Chemical Reactions 314 9.7.2 Sensing Based on Biological Interactions 319 9.7.2.1 Nanocarbon-Based Molecular Electronics 321 9.7.2.2 Silicon-Based Devices 327 9.7.3 Sensing Based on Thermoelectrical Conversion 331 9.8 High-Frequency Molecular Devices 333 9.9 Molecular Machines 337 9.9.1 Molecular Motors 337 9.9.2 Molecular Elevators 338 9.9.3 Molecular Scissors 341 9.9.4 Other Multicomponent Mechanical Machines 344 References 347 10 Summary and Perspectives 375 10.1 Primary Challenges 377 10.1.1 In Situ Measurement 377 10.1.2 Device Fabrication Yield 378 10.1.3 Device-to-Device Variation and Instability 378 10.1.4 Integration Capability 379 10.1.5 Energy Consumption 380 10.1.6 Addressability 380 10.1.7 General Strategies to Meet Challenges 381 10.2 Open Questions 382 10.3 Outlook 384 References 385 Index 389


Best Sellers


Product Details
  • ISBN-13: 9783527345489
  • Publisher: Wiley-VCH Verlag GmbH
  • Publisher Imprint: Blackwell Verlag GmbH
  • Height: 244 mm
  • No of Pages: 408
  • Spine Width: 24 mm
  • Weight: 936 gr
  • ISBN-10: 3527345485
  • Publisher Date: 19 Aug 2020
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Sub Title: Concept, Fabrication and Applications
  • Width: 170 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Molecular-Scale Electronics: Concept, Fabrication and Applications
Wiley-VCH Verlag GmbH -
Molecular-Scale Electronics: Concept, Fabrication and Applications
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Molecular-Scale Electronics: Concept, Fabrication and Applications

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!