Buy Electrochemical Engineering by Philip N. Bartlett
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Mechanical engineering and materials > Electrochemical Engineering: From Discovery to Product(Advances in Electrochemical Sciences and Engineering)
Electrochemical Engineering: From Discovery to Product(Advances in Electrochemical Sciences and Engineering)

Electrochemical Engineering: From Discovery to Product(Advances in Electrochemical Sciences and Engineering)


     0     
5
4
3
2
1



Available


X
About the Book

This volume in the "Advances in Electrochemical Sciences and Engineering" series focuses on problem-solving, illustrating how to translate basic science into engineering solutions. The book's concept is to bring together engineering solutions across the range of nano-bio-photo-micro applications, with each chapter co-authored by an academic and an industrial expert whose collaboration led to reusable methods that are relevant beyond their initial use. Examples of experimental and/or computational methods are used throughout to facilitate the task of moving atomistic-scale discoveries and understanding toward well-engineered products and processes based on electrochemical phenomena.

Table of Contents:
Series Preface xi Preface xiii 1 Introductory Perspectives 1 A. Paul Alivisatos andWojciech T. Osowiecki References 4 2 The Joint Center for Energy Storage Research: A New Paradigm of Research, Development, and Demonstration 7 Thomas J. Carney, Devin S. Hodge, Lynn Trahey, and Fikile R. Brushett 2.1 Background and Motivation 7 2.2 Lithium-ion Batteries: Current State of the Art 8 2.3 Beyond Li-Ion Batteries 9 2.4 JCESR Legacies and a New Paradigm for Research 9 2.5 The JCESR Team 13 2.6 JCESR Operational Tools 16 2.7 Intellectual Property Management 17 2.8 Communication Tools 17 2.9 JCESR Change Decision Process 17 2.10 Safety in JCESR 19 2.11 Battery Technology Readiness Level 20 2.12 JCESR Deliverables 21 2.13 Scientific Tools in JCESR 22 2.14 Techno-economic Modeling 23 2.14.1 Techno-economic Modeling of a Metal–Air System for Transportation Applications 23 2.14.2 Techno-economic Modeling of Flow Batteries for Grid Storage Applications 25 2.15 The Electrochemical Discovery Laboratory 27 2.15.1 The Effect of TraceWater on Beyond Li-ion Devices 27 2.15.2 Stability of Redox Active Molecules 28 2.16 Electrolyte Genome 28 2.16.1 Screening of Redox Active Molecules for Redox Flow 29 2.16.2 Examination of Multivalent Intercalation Materials 30 2.17 Combining the Electrolyte Genome with Techno-economic Modeling 31 2.18 Prototype Development 31 2.19 Legacy of JCESR 33 2.20 Conclusion 34 Acknowledgments 34 References 34 3 Determination of Redox Reaction Mechanisms in Lithium–Sulfur Batteries 41 Kevin H.Wujcik, Dunyang R.Wang, Alexander A. Teran, Eduard Nasybulin, Tod A. Pascal, David Prendergast, and Nitash P. Balsara 3.1 Basics of Lithium–Sulfur Chemistry 41 3.2 End Products of Electrochemical Reactions in the Sulfur Cathode 44 3.3 Intermediate Products of Electrochemical Reactions in the Sulfur Cathode 45 3.3.1 Reactions of S8 45 3.3.2 Reactions of Li2S8 46 3.3.3 Reactions of Li2S4 47 3.3.4 Reactions of Li2S2 48 3.3.5 Production of Radical Anions 49 3.4 Fingerprinting Lithium Polysulfide Intermediates 49 3.4.1 X-ray Absorption Spectroscopy 50 3.4.2 Electron Paramagnetic Resonance Spectroscopy 53 3.4.3 UV–Vis Spectroscopy 54 3.4.4 Raman Spectroscopy 57 3.4.5 Nuclear Magnetic Resonance Spectroscopy 57 3.5 In Situ Spectroscopic Studies of Li–S Batteries 58 3.5.1 X-ray Absorption Spectroscopy 58 3.5.2 Electron Paramagnetic Resonance Spectroscopy 59 3.5.3 UV–Vis Spectroscopy 60 3.5.4 Raman Spectroscopy 60 3.5.5 Nuclear Magnetic Resonance Spectroscopy 61 3.6 Practical Considerations 62 3.7 Concluding Remarks 64 Acknowledgment 68 References 68 4 From the Lab to Scaling-up Thin Film Solar Absorbers 75 Hariklia Deligianni, Lubomyr T. Romankiw, Daniel Lincot, and Pierre-Philippe Grand 4.1 Introduction 75 4.2 State-of-the-art Electrodeposition for Photovoltaics 79 4.2.1 Electrodeposited CuInGaSe2 (CIGS) 80 4.2.1.1 Metal Layers 80 4.2.1.2 Electrodeposition of Copper 81 4.2.1.3 Electrodeposition of Indium 82 4.2.1.4 Electrodeposition of Gallium 85 4.2.2 Single Cu—In—Ga—Se—O Multicomponent Chemistries 89 4.2.2.1 Cu—In—Se Co-deposition 89 4.2.2.2 Cu—In—Ga—Se Co-deposition 91 4.2.2.3 Cu—In—Ga—O Co-deposition 92 4.2.2.4 Cu—In—Ga Co-deposition 93 4.2.3 AnnealingMethods 93 4.2.4 Fabrication of Solar Cells 95 4.3 Electrodeposited Cu2ZnSn(Se,S)4 (CZTS) and Emerging Materials 97 4.3.1 Cu2ZnSn(Se,S)4 (CZTS) 97 4.4 From the Rotating Disk to the Paddle Cell as a Scale-up Platform 99 4.4.1 Introduction to Scale-up 99 4.4.2 Entirely New Solution Agitation Method 100 4.4.3 The Paddle Agitation Technique Is More Readily Scalable 101 4.4.4 Electrical Contact Between the Thin Seed Layer and the Source of Current 103 4.4.5 Previous Scale-up of the Paddle Cell 103 4.4.6 Scale-up of the Paddle Cell to 15 cm× 15 cm 104 4.4.7 Scale-up of the Paddle Cell to 30 cm× 60 cm 107 4.4.8 ImprovingWithin-Wafer Uniformity, Reproducibility, and Demonstration of Scalability 108 4.4.8.1 Within-Wafer Uniformity 108 4.4.8.2 Wafer-to-Wafer Reproducibility 109 4.5 Scaling-up to 60 cm× 120 cm from Tiny Electrodes to Meters 110 4.5.1 A 1 m2 min−1 Continuous Industrial Scale 110 4.5.2 Bath Control 116 4.5.2.1 Insoluble Anode 118 4.5.2.2 Soluble Anode 118 4.5.2.3 Bath Maintenance and Reproducibility and Steady-State Operation 119 4.6 Conclusions 121 Acknowledgments 122 References 123 5 Thin-film Head and the Innovator’s Dilemma 129 Keishi Ohashi 5.1 Introduction 129 5.2 Thin-film Head Technology 130 5.2.1 Magnetic Properties for HDD 130 5.2.2 Permalloy 130 5.2.3 Thin-film Head 132 5.2.4 Magnetic Domain Noise 133 5.3 Data Storage Business in Japan 137 5.3.1 MagneticThin-films for HDD in the 1980s 137 5.3.2 Use of Optics 138 5.3.3 High-Moment Head Core Material 138 5.3.4 High-Ms Write Heads 141 5.4 The Innovator’s Dilemma 142 5.4.1 Thin-film Head is not Disruptive 142 5.4.2 Small HDD 143 5.4.3 MR Head 144 5.4.4 GMR Head 145 5.5 TMR Head 147 5.5.1 Infinite MR Ratio 147 5.5.2 Suspicions Surrounding the TMR Head 147 5.5.3 Low-Resistance TMR Head 148 5.5.4 MGO:The Final Push 150 5.5.5 Exploring New Markets 151 5.6 Discussion 151 Acknowledgments 152 References 153 6 Development of Fully-Continuous Electrokinetic Dewatering of Phosphatic Clay Suspensions 159 Rui Kong, Arthur Dizon, Saeed Moghaddam, andMark E. Orazem 6.1 Introduction 159 6.1.1 Phosphatic Clay Suspensions 160 6.1.2 Industrial Scope 160 6.1.3 Why is Separation ofWater from Clay Difficult? 161 6.2 Current Methods 162 6.2.1 Flocculation 162 6.2.2 Mechanical Dewatering 163 6.2.3 Electrokinetic Separation 163 6.3 Development of Dewatering Technologies for Phosphatic Clays 164 6.3.1 Lab-scale Batch Dewatering 165 6.3.2 Semi-continuous Operation to Recover Clear Supernatant 168 6.3.3 Semi-continuous Operation to Recover Solids 170 6.3.4 Continuous Operation 172 6.3.5 Energy and Power Requirements for All Prototypes Tested 175 6.4 Economic Assessment for On-site Implementation 179 6.4.1 Hydrogen Emission 179 6.4.2 Capital and Operation Costs 180 6.4.2.1 Power and Energy consumption for On-site Operations 181 6.4.2.2 Operation cost 181 6.4.2.3 Capital Cost 183 6.4.3 Results 184 6.5 Our Next Prototype: Dual-zone Continuous Operation 185 6.6 Conclusions 186 Acknowledgments 187 References 187 Contents ix 7 Breaking the Chemical Paradigm in Electrochemical Engineering: Case Studies and Lessons Learned from Plating to Polishing 193 E. Jennings Taylor, Maria E. Inman, Holly M. Garich, Heather A. McCrabb, Stephen T. Snyder, and Timothy D. Hall 7.1 Introduction 193 7.1.1 Perspective 194 7.2 A Brief Overview of Pulse Reverse Current Plating 196 7.2.1 Mass Transport Effects in Pulse Current Plating 198 7.2.2 Current Distribution Effects in Pulse Current Plating 200 7.2.3 Grain Size Effects in Pulse Current Plating 204 7.2.4 Current Efficiency Effects in Pulse Current Plating 205 7.2.5 Concluding Remarks for Pulse Current Plating 205 7.3 Early Developments in Pulse Plating 206 7.3.1 LevelingWithout Levelers Using Pulse Reverse Current Plating 207 7.3.2 DuctilityWithout Brighteners Using Pulse Current Plating 210 7.4 Transition of Pulse Current Plating Concepts to Surface Finishing 211 7.4.1 Pulse Voltage Deburring of Automotive Planetary Gears 212 7.4.2 Transition to Pulse Reverse Voltage Electropolishing of Passive Materials 214 7.4.3 Sequenced Pulse Reverse Voltage Electropolishing of Semiconductor Valves 216 7.4.4 Pulse Reverse Voltage Electropolishing of Strongly Passive Materials 220 7.4.5 Pulse Reverse Voltage Electropolishing of Niobium Superconducting Radio Frequency Cavities 223 7.4.6 Transition Pulse Reverse Voltage Electropolishing to Niobium Superconducting Radio Frequency Cavities 226 7.5 ConcludingThoughts 232 Acknowledgments 233 References 234 8 The Interaction Between a Proton and the Atomic Network in Amorphous Silica Glass Made a Highly Sensitive Trace Moisture Sensor 241 Yusuke Tsukahara, Nobuo Takeda, Kazushi Yamanaka, and Shingo Akao 8.1 Unexpected Long Propagation of Surface AcousticWaves Around a Sphere 241 8.2 Invention of a Ball SAWDevice and Application to Gas Sensors 243 8.3 Unexpected Fluctuations in the Output Signal of the Gas Sensor Leading to the Development of Trace Moisture Sensors 249 8.4 Sol–Gel Silica Film for the Trace Moisture Sensors 253 8.5 A Thermodynamic Model of Interaction ofWater Vapor with Amorphous Silica Glass 254 8.6 Concluding Remarks 257 References 257 9 From Sensors to Low-cost Instruments to Networks: Semiconducting Oxides as Gas-Sensitive Resistors 261 David E.Williams 9.1 Overview 261 9.2 Basic Science of Semiconducting Oxides as Gas-Sensitive Resistors 266 9.2.1 Multiscale Modeling of Gas-Sensitive Resistors 266 9.2.1.1 Introduction 266 9.2.1.2 Effective Medium Model 1: Rationalization of Composition Effects on Response 268 9.2.1.3 Effective Medium Model 2: Diffusion–Reaction Effects on Response; Effects of Electrode Geometry and “Self-Diagnostic” Devices 270 9.2.1.4 Microstructure Model: Percolation and Equivalent Circuit Representation 277 9.2.2 Surface Segregation and Surface Modification Effects 284 9.2.2.1 Surface Modification by “Poisoning” 284 9.2.2.2 Surface Modification by Segregation 286 9.2.2.3 Surface Grafting as a Means for Altering Response 288 9.2.3 Surface Defect and Reaction Models 288 9.3 Commercial Development of Sensors and Instruments 291 9.3.1 Introduction 291 9.3.2 Development of a Low-Cost Instrument for Measurement of Ozone in theAtmosphere 298 9.3.3 Signal Drift Detection 303 9.3.4 A Low-Cost Instrument for Measurement of Atmospheric Nitrogen Dioxide 304 9.3.5 Networks of Instruments in the Atmosphere 306 9.4 Conclusion and Prospects 311 Acknowledgment 313 References 314 Index 323

About the Author :
Richard C. Alkire is Professor Emeritus of Chemical & Biomolecular Engineering Charles and Dorothy Prizer Chair at the University of Illinois, Urbana, USA. He obtained his degrees at Lafayette College and University of California at Berkeley. He has received numerous prizes, including Vittorio de Nora Award and Lifetime National Associate award from National Academy. Philip N. Bartlett is Head of the Electrochemistry Section, Deputy Head of Chemistry for Strategy, and Associate Dean for Enterprise in the Faculty of Natural and Environmental Sciences at the University of Southampton. He received his PhD from Imperial College London and was a Lecturer at the University of Warwick and a Professor for Physical Chemistry at the University of Bath, before moving to his current position. His research interests include bioelectrochemistry, nanostructured materials, and chemical sensors. Marc Koper studied chemistry at Utrecht University and obtained his PhD (cum laude) with Prof. J.H. Sluyters from Utrecht University. He was a postdoctoral Marie Curie Fellow in the group of Prof. W. Schmickler at the University of Ulm (Germany). He then returned to the Netherlands to join the group of Prof. R.A. van Santen at Eindhoven University of Technology, where he initially was a Fellow of the Royal Netherlands Academy of Arts and Sciences and later associate professor. In 2005 he was appointed full professor in fundamental surface science at Leiden University.


Best Sellers


Product Details
  • ISBN-13: 9783527342068
  • Publisher: Wiley-VCH Verlag GmbH
  • Publisher Imprint: Blackwell Verlag GmbH
  • Height: 249 mm
  • No of Pages: 344
  • Series Title: Advances in Electrochemical Sciences and Engineering
  • Sub Title: From Discovery to Product
  • Width: 175 mm
  • ISBN-10: 3527342060
  • Publisher Date: 07 Nov 2018
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Spine Width: 23 mm
  • Weight: 854 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Electrochemical Engineering: From Discovery to Product(Advances in Electrochemical Sciences and Engineering)
Wiley-VCH Verlag GmbH -
Electrochemical Engineering: From Discovery to Product(Advances in Electrochemical Sciences and Engineering)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Electrochemical Engineering: From Discovery to Product(Advances in Electrochemical Sciences and Engineering)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!