Advanced Characterization Techniques for Thin Film Solar Cells
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Energy technology and engineering > Electrical engineering > Advanced Characterization Techniques for Thin Film Solar Cells
Advanced Characterization Techniques for Thin Film Solar Cells

Advanced Characterization Techniques for Thin Film Solar Cells


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

The book focuses on advanced characterization methods for thin-film solar cells that have proven their relevance both for academic and corporate photovoltaic research and development. After an introduction to thin-film photovoltaics, highly experienced experts report on device and materials characterization methods such as electroluminescence analysis, capacitance spectroscopy, and various microscopy methods. In the final part of the book simulation techniques are presented which are used for ab-initio calculations of relevant semiconductors and for device simulations in 1D, 2D and 3D. Building on a proven concept, this new edition also covers thermography, transient optoelectronic methods, and absorption and photocurrent spectroscopy.

Table of Contents:
PART I. Introduction INTRODUCTION TO THIN-FILM PHOTOVOLTAICS Introduction The Photovoltaic Principle Functional Layers in Thin-Film Solar Cells Comjparison of Various Thin-Film Solar-Cell Types Conclusions PART II. Device Characterization FUNDAMENTAL ELECTRICAL CHARACTERIZATIONS OF THIN-FILM SOLAR CELLS Introduction Current/Voltage Curves Quantum-Efficiency Measurements ELECTROLUMINESCENCE ANALYSIS OF SOLAR CELLS AND SOLAR MODULES Introduction Basics Spectrally Resolved EL Spatially Resolved EL of c-Si Solar Cells EL Imaging of Thin-Film Solar Cells and Modules Electromodulated Luminescence under Illumination CAPACITANCE SPECTROSCOPY OF THIN-FILM SOLAR CELLS Introduction Admittance Basics Sample Requirements Instrumentation CV Profiling and the Depletion Approximation Admittance Response of Deep States The Influence of Deep States on CV Profiles Deep-Level Transient Spectroscopy Admittance Spectroscopy Drive-Level Capacitance Profiling Photocapacitance The Meyer-Neldel Rule Spatial Inhomogeneities and Interface States Metastability TIME-OF-FLIGHT ANALYSIS Introduction Fundamentals of TOF Measurements Experimental Details Analysis of TOF Results TRANSIENT OPTOELECTRONIC CHARACTERIZATION OF THIN-FILM SOLAR CELLS Introduction Measurement Setup Charge Extraction and Transient Photovoltage CE with Linearly Increased Voltage Time-Delayed Collection Field Method STEADY-STATE PHOTOCARRIER GRATING METHOD Introduction Basic Analysis of SSPG and Photocurrent Response Experimental Setup Data Analysis Results DOS Determination Data Collection by Automization and Combination with other Experiments Summary PART III. Materials Characterization ABSORPTION AND PHOTOCURRENT SPECTROSCOPY WITH HIGH DYNAMIC RANGE Introduction Photothermal Deflection Spectroscopy Fourier Transform Photocurrent Spectroscopy SPECTROSCOPIC ELLIPSOMETRY Introduction Theory Ellipsometry Instrumentation Data Analysis Spectroscopic Ellipsometry forThin-Film Photovoltaics Summary and Outlook CHARACTERIZING THE LIGHT-TRAPPING PROPERTIES OF TEXTURED SURFACES WITH SCANNING NEAR-FIELD OPTICAL MICROSCOPY Introduction How Does a Scanning Near-Field Optical Microscope Work? The Role of Evanescent Modes for Light Trapping Analysis of Scanning Near-Field Optical Microscopy Images by Fast Fourier Transformation Investigation of Individua lWaveguide Modes Light Propagation inThin-Film Solar Cells Investigated with Dual-Probe SNOM Conclusion PHOTOLUMINESCENCE ANALYSIS OF THIN-FILM SOLAR CELLS Introduction Experimental Issues Basic Transitions Case Studies ELECTRON-SPIN RESONANCE (ESR) IN HYDROGENATED AMORPHOUS SILICON (a-Si:H) Introduction Basics of ESR How to Measure ESR The g Tensor and Hyperfine Interaction in Disordered Solids Discussion of Selected Results Alternative ESR Detection Concluding Remarks SCANNING PROBE MICROSCOPY ON INORGANIC THIN FILMS FOR SOLAR CELLS Introduction Experimental Background Selected Applications Summary ELECTRON MICROSCOPY ON THIN FILMS FOR SOLAR CELLS Introduction Scanning Electron Microscopy Transmission Electron Microscopy Sample Preparation Techniques X-RAY AND NEUTRON DIFFRACTION ON MATERIALS FOR THIN-FILM SOLAR CELLS Introduction Diffraction of X-Rays and Neutron by Matter Grazing Incidence X-Ray Diffraction (GIXRD) Neutron Diffraction of Absorber Materials for Thin-Film Solar Cells Anomalous Scattering of Synchrotron X-Rays IN SITU REAL-TIME CHARACTERIZATION OF THIN-FILM GROWTH Introduction Real-Time In Situ Characterization Techniques for Thin-Film Growth X-Ray Methods for Real-Time Growth Analysis Light Scattering and Reflection Summary RAMAN-SPECTROSCOPY ON THIN FILMS FOR SOLAR CELLS Introduction Fundamentals of Raman Spectroscopy Vibrational Modes in Crystalline Materials Experimental Considerations Characterization of Thin-Film Photovoltaic Materials Conclusions SOFT X-RAY AND ELECTRON SPECTROSCOPY: A UNIQUE "TOOL CHEST" TO CHARACTERIZE THE CHEMICAL AND ELECTRONIC PROPERTIES OF SURFACES AND INTERFACES Introduction Charact

About the Author :
Daniel Abou-Ras is senior scientist at the Helmholtz Center Berlin for Materials and Energy, Germany. He obtained his PhD at ETH Zurich, Switzerland. In 2005, he was awarded the MRS Graduate Student Gold Award at the MRS Spring Meeting. His research interests are correlative approaches in scanning as well as transmission electron microscopy, mainly applied on semiconductor devices. Thomas Kirchartz is professor in the Department of Electrical Engineering and Information Technology at the University Duisburg-Essen and head of the Division for Organic and Hybrid Solar Cells at the Institute of Energy and Climate Research 5 - Photovoltaics at the Research Center Julich, Germany. Previously he was Junior Research Fellow in the Department of Physics at Imperial College London, UK. He obtained his degree in Electrical Engineering and Information Technology from the University of Stuttgart, Germany, in 2006 and his PhD from the RWTH Aachen, Germany, in 2009. Uwe Rau is full professor at the Faculty Electrical Engineering and Computer Science of the RWTH Aachen, Germany, since 2007 and head of the Institute of Energy and Climate Research 5 - Photovoltaics at the Research Center Julich, Germany. He obtained his PhD 1991 from the University Tubingen and was scientific group leader from 1995-2007 at the Universities of Bayreuth and Stuttgart.


Best Sellers


Product Details
  • ISBN-13: 9783527339921
  • Publisher: Wiley-VCH Verlag GmbH
  • Publisher Imprint: Blackwell Verlag GmbH
  • Height: 252 mm
  • No of Pages: 760
  • Spine Width: 46 mm
  • Width: 175 mm
  • ISBN-10: 3527339922
  • Publisher Date: 31 Aug 2016
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Weight: 1860 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Advanced Characterization Techniques for Thin Film Solar Cells
Wiley-VCH Verlag GmbH -
Advanced Characterization Techniques for Thin Film Solar Cells
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Advanced Characterization Techniques for Thin Film Solar Cells

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!