Introduction to Membrane Science and Technology
Home > Science, Technology & Agriculture > Industrial chemistry and manufacturing technologies > Industrial chemistry and chemical engineering > Introduction to Membrane Science and Technology
Introduction to Membrane Science and Technology

Introduction to Membrane Science and Technology


     0     
5
4
3
2
1



International Edition


X
About the Book

Written by a dedicated lecturer and leading membrane scientist, who has worked both in academia and industry, this advanced textbook provides an impressive overview of all aspects of membranes and their applications. Together with numerous industrial case studies, practical examples and questions, the book provides an excellent and comprehensive introduction to the topic. Advanced students as well as process and chemical engineers working in industry will profit from this resource. A significant feature of the book is the treatment of more recently developed membranes and their applications in energy conversion, biomedical components, controlled release devices and environmental engineering with an indication of the present and future commercial impact. The solutions to the questions in the book can be found under http://www.wiley-vch.de/publish/en/books/ISBN3-537-32451-8/ From the Contents: * Introduction * Fundamentals * Membrane Preparation and Characterization * Principles of Membrane Separation Processes * Membrane Modules and Concentration Polarization * Membrane Process Design and Operation

Table of Contents:
Preface xiii Symbols xv 1 Introduction 1 1.1 Overview of Membrane Science and Technology 1 1.2 History of Membrane Science and Technology 4 1.3 Advantages and Limitations of Membrane Processes 7 1.4 The Membrane-Based Industry: Its Structure and Markets 9 1.5 Future Developments in Membrane Science and Technology 12 1.5.1 Biological Membranes 14 1.6 Summary 16 Recommended Reading 16 References 17 2 Fundamentals 19 2.1 Introduction 19 2.2 Definition of Terms 19 2.2.1 The Membrane and Its Function 19 2.2.2 Membrane Materials and Membrane Structures 21 2.2.2.1 Symmetric and Asymmetric Membranes 22 2.2.2.2 Porous Membranes 23 2.2.2.3 Homogeneous Dense Membranes 23 2.2.2.4 Ion-Exchange Membranes 24 2.2.2.5 Liquid Membranes 24 2.2.2.6 Fixed Carrier Membranes 24 2.2.2.7 Other Membranes 25 2.2.2.8 Membrane Geometries 25 2.2.3 Mass Transport in Membranes 27 2.2.4 Membrane Separation Properties 31 2.2.5 Definition of Various Membrane Processes 33 2.2.5.1 Pressure-Driven Membrane Processes 34 2.2.5.2 Activity and Concentration Gradient Driven Membrane Processes 35 2.2.5.3 Electrical Potential and Electrochemical Potential Driven Processes 36 2.3 Fundamentals of Mass Transport in Membranes and Membrane Processes 37 2.3.1 Basic Thermodynamic Relationships with Relevance to Membrane Processes 37 2.3.2 Basic Electrochemical Relationships with Relevance to Membrane Processes 42 2.3.2.1 Electron and Ion Conductivity and Ohm’s Law 42 2.3.2.2 Ion Conductivity, Ion Mobility, and Drift Speed 43 2.3.2.3 Coulomb’s Law and the Electric Field Effect on Ions in Solution 45 2.3.2.4 The Electric Field Effect in Electrolyte Solutions and the Debye-Hückel Theory 46 2.3.2.5 Electrical Dipoles and Intermolecular Forces 48 2.3.3 Chemical and Electrochemical Equilibrium in Membrane Systems 49 2.3.3.1 Water Dissociation Equilibrium and the pH- and pK Values of Acids and Bases 49 2.3.3.2 Osmotic Equilibrium, Osmotic Pressure, Osmosis, and Reverse Osmosis 51 2.3.3.3 The Electrochemical Equilibrium and the Donnan Potential between a Membrane and a Solution 54 2.3.3.4 The Donnan Exclusion of the Co-ions 55 2.3.4 Fluxes and Driving Forces in Membrane Processes 57 2.3.4.1 Viscous Flow through Porous Membranes 58 2.3.4.2 Diffusion in Liquids and Dense Membranes 59 2.3.4.3 Diffusion in Solid or Dense Materials 63 2.3.4.4 Ion Flux and Electrical Current 65 2.3.4.5 Diffusion of Ions in an Electrolyte Solution 66 2.3.4.6 Ion Mobility and Ion Radius in Aqueous Solutions 67 2.3.4.7 Migration of Ions and the Electrical Current 68 2.3.4.8 The Transport Number and the Permselectivity of Ion-exchange Membranes 69 2.3.4.9 Interdependence of Fluxes and Driving Forces 70 2.3.4.10 Gas Flux through Porous Membranes, the Knudsen and Surface Diffusion and Molecular Sieving 71 2.3.4.11 Surface Diffusion and Capillary Condensation of Gases 73 2.4 Mathematical Description of Mass Transport in Membranes 74 2.4.1 Mass Transport Described by the Thermodynamics of Irreversible Processes 75 2.4.2 Mass Transport Described by the Stefan–Maxwell Equations 77 2.4.3 Membrane Mass Transport Models 79 2.4.3.1 The Solution–Diffusion Model 79 2.4.3.2 The Pore Flow Model and the Membrane Cut-off 84 References 87 3 Membrane Preparation and Characterization 89 3.1 Introduction 89 3.2 Membrane Materials 89 3.2.1 Polymeric Membrane Materials 90 3.2.1.1 The Physical State of a Polymer 90 3.2.1.2 Crystallinity and Glass Transition Temperature 92 3.2.1.3 The Glass Transition Temperature and the Free Volume 93 3.2.1.4 Molecular Weight of a Polymer Chain 94 3.2.1.5 Macroscopic Structures of Polymers 95 3.2.1.6 Polymer Chain Interaction and Its Effect on Physical Properties 97 3.2.1.7 The Chemical Structure of the Polymer and Its Effect on Polymer Properties 98 3.2.2 Inorganic Membrane Materials 100 3.2.2.1 Metal Membranes 100 3.2.2.2 Glass Membranes 101 3.2.2.3 Carbon Membranes 101 3.2.2.4 Metal Oxide Membranes 102 3.2.3 Liquid Membrane Materials 103 3.3 Preparation of Membranes 104 3.3.1 Preparation of Symmetric Porous Membranes 104 3.3.1.1 Isotropic Membranes Made by Sintering of Powders, Stretching of Films, and Template Leaching 106 3.3.1.2 Membranes Made by Pressing and Sintering of Polymer Powders 106 3.3.1.3 Membranes Made by Stretching a Polymer Film of Partial Crystallinity 107 3.3.1.4 Membranes Made by Track-Etching 108 3.3.1.5 Membranes Made by Micro-Lithography and Etching Techniques 109 3.3.1.6 Glass Membranes Made by Template Leaching 112 3.3.1.7 Porous Graphite Membranes Made by Pyrolyzing Polymer Structures 112 3.3.1.8 Symmetric Porous Polymer Membranes Made by Phase Inversion Techniques 112 3.3.2 Preparation of Asymmetric Membranes 114 3.3.2.1 Preparation of Integral Asymmetric Membranes 115 3.3.3 Practical Membrane Preparation by Phase Inversion 117 3.3.3.1 Temperature-Induced Membrane Preparation 117 3.3.3.2 Diffusion-Induced Membrane Preparation 118 3.3.4 Phenomenological Description of the Phase Separation Process 124 3.3.4.1 Temperature-Induced Phase Separation Process 125 3.3.4.2 Thermodynamics of a Temperature-Induced Phase Separation of a Two-Component Mixture 126 3.3.4.3 The Diffusion-Induced Phase Separation Process 133 3.3.4.4 Structures of Asymmetric Membranes Obtained by Phase Inversion 136 3.3.4.5 Identification of Various Process Parameters in the Preparation of Phase Inversion Membranes 136 3.3.4.6 General Observation Concerning the Structure of Phase Inversion Membranes 137 3.3.4.7 The Selection of a Polymer/Solvent/Precipitant System for the Preparation of Membranes 144 3.3.4.8 Membrane Pre- and Post-Precipitation Treatment 148 3.3.5 Preparation of Composite Membranes 149 3.3.5.1 Techniques Used for the Preparation of Polymeric Composite Membranes 151 3.3.6 Preparation of Inorganic Membranes 155 3.3.6.1 Suspension Coating and the Sol–Gel Process 157 3.3.6.2 Perovskite Membranes 158 3.3.6.3 Zeolite Membranes 159 3.3.6.4 Porous Carbon Membranes 160 3.3.6.5 Porous Glass Membranes 161 3.3.7 Preparation of Homogeneous Solid Membranes 161 3.3.7.1 Preparation of Liquid Membranes 162 3.3.7.2 Preparation of Ion-Exchange Membranes 164 3.4 Membrane Characterization 170 3.4.1 Characterization of Porous Membranes 171 3.4.1.1 Techniques using Microscopy 172 3.4.1.2 Determination of Micro- and Ultrafiltration Membrane Fluxes 173 3.4.1.3 Membrane Retention and Molecular Weight Cut-Off 175 3.4.1.4 The Bacterial Challenge Test 178 3.4.2 Membrane Pore Size Determination 178 3.4.2.1 Air/Liquid and Liquid/Liquid Displacement 179 3.4.2.2 The Bubble Point Method and Gas Liquid Porosimetry 180 3.4.2.3 Liquid/Liquid Displacement 182 3.4.2.4 Permporometry 185 3.4.2.5 Thermoporometry 188 3.4.3 Characterization of Dense Membranes 189 3.4.3.1 Determination of Diffusivity in Dense Membranes 190 3.4.3.2 Long-Term Stability of Membranes 193 3.4.4 Determination of Electrochemical Properties of Membranes 193 3.4.4.1 Hydraulic Permeability of Ion-Exchange Membranes 194 3.4.4.2 The Fixed Charge Density of Ion-Exchange Membranes 194 3.4.4.3 Determination of the Electrical Resistance of Ion-Exchange Membranes 195 3.4.4.4 Membrane Resistance Measurements by Impedance Spectroscopy 198 3.4.4.5 Permselectivity of Ion-Exchange Membranes 203 3.4.4.6 Membrane Permeation Selectivity for Different Counter-ions 206 3.4.4.7 Water Transport in Ion-Exchange Membranes 207 3.4.4.8 Characterization of Special Property Ion-Exchange Membranes 209 3.4.4.9 The Mechanical Properties of Membranes 209 References 210 4 Principles of Membrane Separation Processes 213 4.1 Introduction 213 4.2 The Principle of Membrane Filtration Processes 214 4.2.1 The Principle of Microfiltration 216 4.2.2 The Principle of Ultrafiltration 219 4.2.3 The Principle of Nanofiltration 223 4.2.4 The Principle of Reverse Osmosis 229 4.2.4.1 The Reverse Osmosis Mass Transport Described by the Solution–Diffusion Model 230 4.2.4.2 Reverse Osmosis Transport Described by the Phenomenological Equations 234 4.2.4.3 The Water and Salt Distribution in a Polymer Matrix and the Cluster Function 239 4.3 The Principle of Gas and Vapor Separation 239 4.3.1 Gas Separation by Knudsen Diffusion 240 4.3.2 Gas Separation by Surface Diffusion and Molecular Sieving 241 4.3.3 Gas Transport in a Dense Polymer Matrix 243 4.3.4 The Principle of Pervaporation 254 4.3.4.1 Material Selection for the Preparation of Pervaporation Membranes 259 4.4 The Principle of Dialysis 261 4.4.1 Mass Transport of Components Carrying No Electrical Charges in Dialysis 262 4.4.2 Dialysis Mass Transport of Electrolytes in a Membrane without Fixed Ions 264 4.4.3 Dialysis of Electrolytes with Ion-Exchange Membranes 266 4.5 The Principle of Electromembrane Processes 268 4.5.1 Electrodialysis and Related Processes 269 4.5.1.1 Mass Transport in Electrodialysis 270 4.5.1.2 Electrical Current and Ion Fluxes in Electrodialysis 272 4.5.1.3 The Transport Number and Membrane Permselectivity 274 4.5.1.4 Membrane Counter-Ion Permselectivity 275 4.5.1.5 Water Transport in Electrodialysis 276 4.5.1.6 Current Efficiency in Electrodialysis 276 4.5.1.7 Electrodialysis with Bipolar Membranes 278 4.5.1.8 Continuous Electrodeionization 280 4.5.1.9 Capacitive Deionization 281 4.5.1.10 Energy Generation by Reverse Electrodialysis 282 4.5.2 Electrochemical Synthesis with Ion-Exchange Membranes 283 4.5.3 Ion-Exchange Membranes in Energy Storage and Conversion 287 4.6 The Principle of Membrane Contactors 292 4.6.1 Membrane Contactors Separating a Hydrophobic from a Hydrophilic Phase 294 4.6.2 Membrane Contactors Used to Separate Two Immiscible Liquid Phases 295 4.6.3 Membrane Contactors Separating a Liquid from a Gas Phase 298 4.6.4 Membrane Distillation 300 4.6.5 Osmotic Distillation 305 4.6.6 Supported Liquid Membranes and Facilitated Transport 306 4.6.7 Counter-Current Coupled Facilitated Transport 308 4.7 Membrane Reactors 311 4.7.1 Membrane Emulsifier 314 4.8 Membrane-Based Controlled Release of Active Agents 314 References 320 5 Membrane Modules and Concentration Polarization 323 5.1 Introduction 323 5.2 Membrane Modules 324 5.2.1 Membrane Holding Devices in Laboratory and Small-Scale Applications 324 5.2.1.1 The Stirred Batch Cell 325 5.2.1.2 The Sealed Membrane Point-of-Use Filter 326 5.2.1.3 The Plate-and-Frame Membrane Module 326 5.2.2 Industrial-Type Membrane Modules for Large Capacity Applications 328 5.2.2.1 The Pleated Filter Membrane Cartridge 328 5.2.2.2 The Spiral-Wound Module 329 5.2.2.3 The Tubular Membrane Module 331 5.2.2.4 The Capillary Membrane Module 333 5.2.2.5 The Hollow Fiber Membrane Module 335 5.2.3 Other Membrane Modules 336 5.2.3.1 Membrane Modules Used in Electrodialysis and in Dialysis 336 5.3 Concentration Polarization and Membrane Fouling 340 5.3.1 Concentration Polarization in Filtration Processes 342 5.3.1.1 Concentration Polarization without Solute Precipitation 343 5.3.1.2 Concentration Polarization in Turbulent Flow Described by the Film Model 343 5.3.1.3 Concentration Polarization in Laminar Flow Membrane Devices 348 5.3.1.4 Rigorous Analysis of Concentration Polarization 352 5.3.1.5 Membrane Flux Decline due to Concentration Polarization without Solute Precipitation 353 5.3.1.6 Concentration Polarization with Solute Precipitation at the Membrane Surface 354 5.3.2 Concentration Polarization in Other Membrane Separation Processes 362 5.3.2.1 Concentration Polarization in Dialysis and Electrodialysis 363 5.3.2.2 Concentration Polarization in Electrodialysis 366 5.3.2.3 Concentration Polarization in Gas Separation 371 5.3.2.4 Concentration Polarization in Pervaporation 373 5.3.3 Membrane Fouling and Its Causes and Consequences 373 5.3.3.1 Prevention of Membrane Fouling 375 References 378 6 Membrane Process Design and Operation 381 6.1 Introduction 381 6.2 Membrane Filtration Processes 381 6.2.1 Recovery Rate, Membrane Rejection, Retentate, and Filtrate Concentrations 382 6.2.1.1 Solute Losses in Membrane Filtration Processes 386 6.2.1.2 Operation Modes in Filtration Processes 387 6.2.1.3 Reverse Osmosis Process Design 388 6.2.1.4 Stages and Cascades in Membrane Filtration 392 6.2.1.5 Ultra- and Microfiltration Process Design 395 6.2.1.6 Ultrafiltration Process Design 401 6.2.1.7 Diafiltration 403 6.2.2 Costs of Membrane Filtration Processes 406 6.2.2.1 Energy Requirements in Filtration Processes 406 6.2.2.2 Investment- and Maintenance-Related Costs in Filtration Processes 411 6.3 Gas Separation 412 6.3.1 Gas Separation Process Design and Operation 413 6.3.1.1 Staging in Gas Separation and the Reflux Cascade 419 6.3.2 Energy Consumption and Cost of Gas Separation 421 6.4 Pervaporation 422 6.4.1 Pervaporation Modes of Operation 424 6.4.1.1 Staging and Cascades in Pervaporation 425 6.4.2 Pervaporation Energy Consumption and Process Costs 428 6.5 Dialysis 428 6.5.1 Dialysis Process and System Design 430 6.5.1.1 Dialyzer Membrane Module Constructions 431 6.5.2 Process Costs in Dialysis 435 6.6 Electrodialysis and Related Processes 436 6.6.1 Process Design in Conventional Electrodialysis 436 6.6.1.1 Operation of the Electrodialysis Stacks in a Desalination Plant 441 6.6.2 Process Costs in Electrodialysis 442 References 444 Appendix A 447 Questions and Exercises 447 Appendix B 457 Index 465

About the Author :
Heinrich Strathmann is Professor Emeritus of the University of Twente, The Netherlands. He obtained his basic education in Physical Chemistry at the University of Darmstadt in Germany where he received his Dr.-Ing. in 1965. He worked for several years in the membrane based industry in the United States and in Germany. He is also Associate Professor at the University of Stuttgart and Honorary Prrofessor at South China Central University. Dr. Strathmann is on the editorial board of various scientific journals and is author of three books on membrane science and technology. In 2007 he was awarded by the European Membrane Society with the R.M. Barrer Price.

Review :
“The synopsis for the book states that it is aimed at 'advanced students as well as process and chemical engineers working in industry'. I would fully support this view and wholeheartedly recommend the book to such practitioners and similarly interested readers. It is a worthy addition to anyone's bookshelf.”  (Chemistry World, 2012)


Best Sellers


Product Details
  • ISBN-13: 9783527324514
  • Publisher: Wiley-VCH Verlag GmbH
  • Publisher Imprint: Blackwell Verlag GmbH
  • Height: 249 mm
  • No of Pages: 544
  • Spine Width: 28 mm
  • Width: 180 mm
  • ISBN-10: 3527324518
  • Publisher Date: 07 Sep 2011
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Weight: 1052 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Introduction to Membrane Science and Technology
Wiley-VCH Verlag GmbH -
Introduction to Membrane Science and Technology
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Introduction to Membrane Science and Technology

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!