Vektoranalysis
Home > Science, Technology & Agriculture > Technology: general issues > Engineering: general > Vektoranalysis: (Teubner Studienbücher Mathematik)
Vektoranalysis: (Teubner Studienbücher Mathematik)

Vektoranalysis: (Teubner Studienbücher Mathematik)


     0     
5
4
3
2
1



International Edition


X
About the Book

Bücher über Vektoranalysis beginnen üblicherweise mit der Definition eines Vektors als Äquivalenzklasse gerichteter Strecken - oder weniger genau, als Größe, die sowohl eine Richtung als auch eine Länge hat. Diese Einführung ist wegen ihres einfach erscheinenden Konzeptes einprägsam, aber sie führt zu logischen Schwierigkeiten, die nur durch sorgfältiges Vorgehen gelöst werden können. Folgerichtig haben Studenten oft Probleme, die Anfänge der Vektoranalysis vollständig zu verstehen und verlieren schnell an Vertrauen. Eine andere Unzulänglichkeit ist es, daß bei der weiteren Entwicklung häufig auf die geometrische Anschauung zurückgegriffen wird und viel Sorgfalt nötig ist, um analytische Zusammenhänge nicht zu verwischen oder zu übersehen. So wird z. B. selten klar, daß bei der Definition des Gradienten eines Skalarfeldes, der Divergenz oder der Rotation eines Vektorfeldes vorausgesetzt werden muß, daß die Felder stetig differenzierbar sind und daß die bloße Existenz der partiellen Ableitungen erster Ordnung unzureichend ist. Der Einstieg in die Vektoranalysis, der in diesem Band gewählt wurde, basiert auf der Definition eines Vektors mit Hilfe rechtwinkliger kartesischer Komponenten, die bei einer Änderung der Achsen vorgegebene Transformationsgesetze erfüllen. Dieser Einstieg wurde seit 10 Jahren erfolgreich in Anfängervorlesungen für Mathematiker und andere Naturwissenschaftler benutzt und bietet einige Vorteile. Regeln zur Addition und Subtraktion von Vektoren, zur Berechnung des Skalar- und Vektor­ produktes und zum Differenzieren sind schnell greifbar und die Möglichkeit, Vektoren so einfach zu handhaben, gibt den Studenten unmittelbares Zutrauen. Der spätere Einstieg in die Theorie der Vektorfelder erscheint natürlich, daGradient, Divergenz und Rotation in ihrer Koordinatenform definiert sind.

Table of Contents:
1. Rechtwinklige kartesische Koordinaten und Drehung der Achsen.- 1.1. Rechtwinklige kartesische Koordinaten.- 1.2. Richtungskosinus und Richtungsparameter.- 1.3. Der Winkel zwischen Geraden durch den Ursprung.- 1.4. Rechtwinklige Projektion einer Geraden auf eine andere.- 1.5. Drehung der Achsen.- 1.6. Die Summenkonvention und ihr Gebrauch.- 1.7. Invarianz bei Drehungen.- 1.8. Matrizenschreibweise.- 2. Skalar- und Vektoralgebra.- 2.1. Skalare.- 2.2. Vektoren, allgemeines.- 2.3. Multiplikation eines Vektors mit einem Skalar.- 2.4. Addition und Subtraktion von Vektoren.- 2.5. Die Einheitsvektoren i, j, k.- 2.6. Das Skalarprodukt.- 2.7. Das Vektorprodukt.- 2.8. Das Spatprodukt.- 2.9. Das doppelte Vektorprodukt.- 2.10. Das Produkt aus vier Vektoren.- 2.11. Gebundene Vektoren.- 3. Vektorfunktionen einer reellen Variablen. Differentialgeometrie von Kurven.- 3.1. Vektorfunktionen und ihre geometrische Bedeutung.- 3.2. Differenzieren eines Vektors.- 3.3. Differentiationsregeln.- 3.4. Tangenten an eine Kurve. Glatte, stückweise glatte und einfache Kurven.- 3.5. Die Bogenlänge.- 3.6. Krümmung und Torsion.- 3.7. Anwendungen in der Kinematik.- 4. Skalar- und Vektorfelder.- 4.1. Bereiche.- 4.2. Funktionen mehrerer Variabler.- 4.3. Definition von Skalar- und Vektorfeldern.- 4.4. Der Gradient eines Skalarfeldes.- 4.5. Eigenschaften des Gradienten.- 4.6. Divergenz und Rotation eines Vektorfeldes.- 4.7. Der Nabla-Operator.- 4.8. Skalar-invariante Operatoren.- 4.9. Nützliche Gleichungen.- 4.10. Zylinderkoordinaten und sphärische Polarkoordinaten.- 4.11. Allgemeine krummlinige orthogonale Koordinaten.- 4.12. Vektorkomponenten in krummlinigen orthogonalen Koordinaten.- 4.13. grad ?, div F, rot F und ?2 in krummlinigen orthogonalen Koordinaten.- 4.14. Vektoranalysis imn-dimensionalen Raum.- 5. Kurven-, Oberflächen- und Volumenintegrale.- 5.1. Das Kurvenintegral über ein Skalarfeld.- 5.2. Das Kurvenintegral über ein Vektorfeld.- 5.3. Mehrfachintegrale.- 5.4. Doppel- und Dreifachintegrale.- 5.5. Flächen.- 5.6. Das Oberflächenintegral.- 5.7. Das Volumenintegral.- 6. Integralsätze.- 6.1. Einführung.- 6.2. Der Gaußsche Satz.- 6.3. Die Greenschen Formeln.- 6.4. Der Stokessche Satz.- 6.5. Grenzwertdefinition von div F und rot F.- 6.6. Geometrische und physikalische Bedeutung von Divergenz und Rotation.- 7. Anwendungen auf Potentiale.- 7.1. Zusammenhängende Bereiche.- 7.2. Das Skalarpotential.- 7.3. Das Vektorpotential.- 7.4. Die Poisson-Gleichung.- 7.5. Die Poisson-Gleichung in Vektorform.- 7.6. Der Helmholtzsche Satz.- 7.7. Raumwinkel.- 8. Kartesische Tensoren.- 8.1. Einführung.- 8.2. Kartesische Tensoren: algebraische Grundlagen.- 8.3. Invariante Tensoren.- 8.4. Tensorfelder.- 8.5. Der Gaußsche Satz für Tensorfelder.- 9. Sätze über die Darstellung invarianter Tensoren.- 9.1. Einführung.- 9.2. Diagonalisierung symmetrischer Tensoren zweiter Stufe.- 9.3. Konstanten invarianter Tensoren zweiter Stufe.- 9.4. Darstellung invarianter Vektorfunktionen.- 9.5. Invariante Skalarfunktionen von symmetrischen Tensoren zweiter Stufe.- 9.6. Darstellung invarianter Tensorfunktionen.- Anhang 1. Determinanten.- 2. Die Kettenregel für Jacobideterminanten.- 4. Lösungen zu den Übungsaufgaben.- 5. Weitere Übungsaufgaben und Lösungen.


Best Sellers


Product Details
  • ISBN-13: 9783519120445
  • Publisher: Springer Fachmedien Wiesbaden
  • Publisher Imprint: Vieweg+Teubner Verlag
  • Edition: Revised edition
  • No of Pages: 260
  • Returnable: N
  • ISBN-10: 3519120445
  • Publisher Date: 01 Jan 1988
  • Binding: Paperback
  • Language: German
  • Returnable: N
  • Series Title: Teubner Studienbücher Mathematik


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Vektoranalysis: (Teubner Studienbücher Mathematik)
Springer Fachmedien Wiesbaden -
Vektoranalysis: (Teubner Studienbücher Mathematik)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Vektoranalysis: (Teubner Studienbücher Mathematik)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!