Uncertainty Quantification and Predictive Computational Science
Home > Mathematics and Science Textbooks > Physics > Mathematical physics > Uncertainty Quantification and Predictive Computational Science: A Foundation for Physical Scientists and Engineers
Uncertainty Quantification and Predictive Computational Science: A Foundation for Physical Scientists and Engineers

Uncertainty Quantification and Predictive Computational Science: A Foundation for Physical Scientists and Engineers


     0     
5
4
3
2
1



Available


X
About the Book

This textbook teaches the essential background and skills for understanding and quantifying uncertainties in a computational simulation, and for predicting the behavior of a system under those uncertainties. It addresses a critical knowledge gap in the widespread adoption of simulation in high-consequence decision-making throughout the engineering and physical sciences. Constructing sophisticated techniques for prediction from basic building blocks, the book first reviews the fundamentals that underpin later topics of the book including probability, sampling, and Bayesian statistics. Part II focuses on applying Local Sensitivity Analysis to apportion uncertainty in the model outputs to sources of uncertainty in its inputs. Part III demonstrates techniques for quantifying the impact of parametric uncertainties on a problem, specifically how input uncertainties affect outputs. The final section covers techniques for applying uncertainty quantification to make predictions underuncertainty, including treatment of epistemic uncertainties. It presents the theory and practice of predicting the behavior of a system based on the aggregation of data from simulation, theory, and experiment. The text focuses on simulations based on the solution of systems of partial differential equations and includes in-depth coverage of Monte Carlo methods, basic design of computer experiments, as well as regularized statistical techniques. Code references, in python, appear throughout the text and online as executable code, enabling readers to perform the analysis under discussion. Worked examples from realistic, model problems help readers understand the mechanics of applying the methods. Each chapter ends with several assignable problems.   Uncertainty Quantification and Predictive Computational Science fills the growing need for a classroom text for senior undergraduate and early-career graduate students in the engineering and physical sciences and supports independent study by researchers and professionals who must include uncertainty quantification and predictive science in the simulations they develop and/or perform.

Table of Contents:
Part I Fundamentals.- Introduction.- Probability and Statistics Preliminaries.- Input Parameter Distributions.- Part  II Local Sensitivity Analysis.- Derivative Approximations.- Regression Approximations.- Adjoint-based Local Sensitivity Analysis.- Part III Parametric Uncertainty Quantification.- From Sensitivity Analysis to UQ.- Sampling-Based UQ.- Reliability Methods.- Polynomial Chaos Methods.- Part IV Predictive Science.- Emulators and Surrogate Models.- Reduced Order Models.- Predictive Models.- Epistemic Uncertainties.- Appendices.- A. A cookbook of distributions.

About the Author :
Ryan McClarren has been teaching uncertainty quantification and predictive computational science to students from various engineering and physical science departments at since 2009. He is currently Associate Professor of Aerospace and Mechanical Engineering at the University of Notre Dame. Prior to joining Notre Dame in 2017, he was Assistant Professor of Nuclear Engineering at Texas A&M University, an institution well-known in the nuclear engineering community for its computational research and education. He has authored numerous publications in refereed journals, is the author of a book that teaches python and numerical methods to undergraduates, Computational Nuclear Engineering and Radiological Science Using Python, and was the editor of a special issue of the journal Transport Theory and Statistical Physics. A well-known member of the computational nuclear engineering community, he has won research awards from NSF, DOE, and three national labs. While an undergraduate at the University of Michigan he won three awards for creative writing. Before joining the faculty of Texas A&M, Dr. McClarren was a research scientist at Los Alamos National Laboratory in the Computational Physics and Methods group.


Best Sellers


Product Details
  • ISBN-13: 9783319995243
  • Publisher: Springer International Publishing AG
  • Publisher Imprint: Springer International Publishing AG
  • Height: 235 mm
  • No of Pages: 345
  • Returnable: Y
  • Width: 155 mm
  • ISBN-10: 3319995243
  • Publisher Date: 05 Dec 2018
  • Binding: Hardback
  • Language: English
  • Returnable: Y
  • Sub Title: A Foundation for Physical Scientists and Engineers


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Uncertainty Quantification and Predictive Computational Science: A Foundation for Physical Scientists and Engineers
Springer International Publishing AG -
Uncertainty Quantification and Predictive Computational Science: A Foundation for Physical Scientists and Engineers
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Uncertainty Quantification and Predictive Computational Science: A Foundation for Physical Scientists and Engineers

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!