Biologically Inspired Control of Humanoid Robot Arms
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Electronics and communications engineering > Electronics engineering > Automatic control engineering > Biologically Inspired Control of Humanoid Robot Arms: Robust and Adaptive Approaches
Biologically Inspired Control of Humanoid Robot Arms: Robust and Adaptive Approaches

Biologically Inspired Control of Humanoid Robot Arms: Robust and Adaptive Approaches


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This book investigates a biologically inspired method of robot arm control, developed with the objective of synthesising human-like motion dynamically, using nonlinear, robust and adaptive control techniques in practical robot systems. The control method caters to a rising interest in humanoid robots and the need for appropriate control schemes to match these systems. Unlike the classic kinematic schemes used in industrial manipulators, the dynamic approaches proposed here promote human-like motion with better exploitation of the robot’s physical structure. This also benefits human-robot interaction. The control schemes proposed in this book are inspired by a wealth of human-motion literature that indicates the drivers of motion to be dynamic, model-based and optimal. Such considerations lend themselves nicely to achievement via nonlinear control techniques without the necessity for extensive and complex biological models. The operational-space method of robot control forms the basis of many of the techniques investigated in this book. The method includes attractive features such as the decoupling of motion into task and posture components. Various developments are made in each of these elements. Simple cost functions inspired by biomechanical “effort” and “discomfort” generate realistic posture motion. Sliding-mode techniques overcome robustness shortcomings for practical implementation. Arm compliance is achieved via a method of model-free adaptive control that also deals with actuator saturation via anti-windup compensation. A neural-network-centered learning-by-observation scheme generates new task motions, based on motion-capture data recorded from human volunteers. In other parts of the book, motion capture is used to test theories of human movement. All developed controllers are applied to the reaching motion of a humanoid robot arm and are demonstrated to be practically realisable. This book is designed to be of interest to those wishing to achieve dynamics-based human-like robot-arm motion in academic research, advanced study or certain industrial environments. The book provides motivations, extensive reviews, research results and detailed explanations. It is not only suited to practising control engineers, but also applicable for general roboticists who wish to develop control systems expertise in this area.

Table of Contents:
Introduction.- Part I Background on Humanoid Robots and Human Motion.- Humanoid Robots and Control.- Human Motion.- Part II Robot Control: Implementation.- Basic Operational Space Controller.- Sliding-Mode Task Controller Modification.- Implementing “Discomfort” for Smooth Joint Limits.- Sliding-Mode Optimal Controller.- Adaptive Compliance Control.- Part III Human Motion Recording for Task Motion Modelling and Robot Arm Control.- Human Motion Recording and Analysis.- Neural Network Motion Learning by Observation for Task Modelling and Control.- Appendices: Kinematics - Introduction.- Inverse Kinematics for BERUL2.- Theoretical Summary of Adaptive Compliant Controller.

About the Author :
Dr. Adam (‘Ad’) Spiers is an Associate Research Scientist at the GRAB lab in Yale University (Connecticut, USA). The majority of this book represents research he carried out for his PhD (2007-2011) at the Bristol Robotics Laboratory (BRL) and University of Bristol (UK) under the supervision of Dr. Guido Herrmann and Prof. Chris Melhuish. In addition to a PhD, he holds an MSc in Engineering and Information Sciences (2006) and BSc in Cybernetics and Control Engineering (2004), both from the University of Reading (UK). He currently conducts research into human movement, upper limb prosthetics, underactuated robot hands and shape-changing haptic navigation interfaces for pedestrian guidance. His other research work, outside that noted in this book, has included surgical robotics, tele-haptics, medical diagnostic simulators, robot gripper / sensor development, tactile displays, neural interfacing and enactive interfaces. He has also worked on remote handling robots at UK nuclear facilities and collaborated with several artists to create unique technology driven theater and art installations. He was an invited resident of the Pervasive Media Studio (Bristol, UK) from 2012-2014. Dr Said G Khan is an Assistant Professor in Robotics and Control in the Department of Mechanical Engineering, College of Engineering Yanbu, Taibah University Al Madinah, Saudi Arabia. He has previously worked as a postdoctoral researcher at the Department of Mechanical Engineering, Queen's School of Engineering, University of Bristol. Dr. S G Khan is a member of the Nonlinear Robotics Control Group (NRCG) at the Bristol Robotics Laboratory. He has completed his PhD at the Bristol Robotics Laboratory, University of the West of England (and University of Bristol) in 2012 in Robotics and Control, specializing in “safe human-robot interaction via adaptive compliance control”. He did his M.Sc. Robotics with Distinction from the University Of Plymouth, UK in 2006. He received his B.Sc. in Mechanical Engineering, First Division with Honours, from University of Engineering Technology (UET) Peshawar, Pakistan in October, 2003. He was a part-time lecturer in University of the West of England, Bristol, from September 2008 to October, 2011, and a Research Associate at Department of Mechanical Engineering, GIK Institute of Engineering Sciences and Technology, Pakistan, from March 2007 to July 2008. Dr. Guido Herrmann is an accomplished control engineer and a Reader in Control and Dynamics at the University of Bristol with extensive experience in the development and implementation of novel control schemes for industrially relevant systems. He received the German degree 'Diplom-Ingenieur der Elektrotechnik' (with highest honours) from the Technische Universität zu Berlin. In 2001, he obtained a PhD from the University of Leicester. From 2001 to 2003, he worked in the mechatronics and micro-systems group of the A*Star Data Storage Institute(Singapore) doing research and consultancy for the data storage industry. From 2003 until February 2007, he was a Research Associate, Research Fellow and a Lecturer in the Department of Engineering at Leicester University. In March 2007, Dr Herrmann took up a permanent lecturing position at the Department of Mechanical Engineering of the University of Bristol. He was at several occasions a Visiting Lecturer and a Visiting Professor in Malaysia and Singapore; in September 2005, he was a Visiting Professor at the Data Storage Institute. He is leading the Nonlinear Robotics Control Group (NRCG) at the Bristol Robotics Laboratory. He is a Senior Member of the IEEE and a Fellow of the IET. He has been an Associate Editor of the International Journal of Social Robotics (since foundation in 2009) and a Technical Editor of the IEEE/ASME Transactions on Mechatronics (2009/2010-2014/2015 editorial cohort).


Best Sellers


Product Details
  • ISBN-13: 9783319807355
  • Publisher: Springer International Publishing AG
  • Publisher Imprint: Springer International Publishing AG
  • Height: 235 mm
  • No of Pages: 276
  • Sub Title: Robust and Adaptive Approaches
  • ISBN-10: 3319807358
  • Publisher Date: 30 May 2018
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Width: 155 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Biologically Inspired Control of Humanoid Robot Arms: Robust and Adaptive Approaches
Springer International Publishing AG -
Biologically Inspired Control of Humanoid Robot Arms: Robust and Adaptive Approaches
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Biologically Inspired Control of Humanoid Robot Arms: Robust and Adaptive Approaches

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!