Buy Basic Semiconductor Physics by Chihiro Hamaguchi
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Electronics and communications engineering > Electronics engineering > Electronic devices and materials > Basic Semiconductor Physics: (Graduate Texts in Physics)
Basic Semiconductor Physics: (Graduate Texts in Physics)

Basic Semiconductor Physics: (Graduate Texts in Physics)


     0     
5
4
3
2
1



Available


X
About the Book

The new edition of this textbook presents a detailed description of basic semiconductor physics. The text covers a wide range of important phenomena in semiconductors, from the simple to the advanced. Four different methods of energy band calculations in the full band region are explained: local empirical pseudopotential, non-local pseudopotential, KP perturbation and tight-binding methods. The effective mass approximation and electron motion in a periodic potential, Boltzmann transport equation and deformation potentials used for analysis of transport properties are discussed. Further, the book examines experiments and theoretical analyses of cyclotron resonance in detail. Optical and transport properties, magneto-transport, two-dimensional electron gas transport (HEMT and MOSFET) and quantum transport are reviewed, while optical transition, electron-phonon interaction and electron mobility are also addressed. Energy and electronic structure of a quantum dot (artificial atom) are explained with the help of Slater determinants. The physics of semiconductor lasers is also described, including Einstein coefficients, stimulated emission, spontaneous emission, laser gain, double heterostructures, blue lasers, optical confinement, laser modes, and strained quantum well lasers, offering insights into the physics of various kinds of semiconductor lasers. In this third edition, energy band calculations in full band zone with spin-orbit interaction are presented, showing all the matrix elements and equipping the reader to prepare computer programs of energy band calculations. The Luttinger Hamiltonian is discussed and used to analyze the valence band structure. Numerical calculations of scattering rate, relaxation time, and mobility are presented for typical semiconductors, which are very helpful for understanding of transport. Energy band structures and effective masses of nitrides such as GaN, InN, AlN and their ternary alloys are discussed because they are very important materials for the blue light emission, and high power devices with and high frequency. Learning and teaching with this textbook is supported by problems and solutions in the end of the chapters. The book is written for bachelor and upper undergraduate students of physics and engineering.

Table of Contents:
1 Energy Band Structures of Semiconductors . . . . . . . . . . . . . . . 1 1.1 Free-Electron Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Bloch Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Nearly Free Electron Approximation . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Reduced Zone Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5 Free{Electron Bands (Empty{Lattice Bands) . . . . . . . . . . . . . . 9 1.5.1 First Brillouin Zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5.2 Reciprocal Lattice Vectors of fcc Crystal . . . . . . . . . . . . 11 1.5.3 Free Electron Bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.6 Pseudopotential Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.6.1 Local Pseudopotential Theo ry . . . . . . . . . . . . . . . . . . . . . 15 1.6.2 Pseudopotential Form Factors . . . . . . . . . . . . . . . . . . . . . . 19 1.6.3 Nonlocal Pseudopotential Theory . . . . . . . . . . . . . . . . . . . 21 1.6.4 Energy Band Calculation by Local Pseudopotential Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.6.5 Spin{Orbit Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.6.6 Energy Band Calculations by Nonlocal Pseudopotential Method with Spin{orbit Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.7 k _ p Perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 1.7.1 k _ p Hamiltonian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 1.7.2 Derivation of the k _ p Parameters . . . . . . . . . . . . . . . . . . 40 1.7.3 15{band k _ p Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 1.7.4 Antisymmetric Potentials for Zinc Blende Crystals . . . 50 1.7.5 Spin{orbit Interaction Hamiltonian . . . . . . . . . . . . . . . . 51 1.7.6 30{band k _ p Method with the Spin{Orbit Interaction 53 1.8 Density of States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2 Cyclotron Resonance and Energy Band Structures . . . . . . . 61 2.1 Cyclotron Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.2 Analysis of Valence Bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 IX X Contents 2.3 Spin{Orbit Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 2.4 Non-parabolicity of the Conduction Band. . . . . . . . . . . . . . . . . . 81 2.5 Electron Motion in a Magnetic Field and Landau Levels . . . . . 85 2.5.1 Landau Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 2.5.2 Density of States and Inter Landau Level Transition . . 90 2.5.3 Landau Levels of a Non-parabolic Band . . . . . . . . . . . . . 92 2.5.4 Landau Levels of the Valence Bands . . . . . . . . . . . . . . . . 96 2.5.5 Magneto{optical Absorption . . . . . . . . . . . . . . . . . . . . . . . 101 2.6 Luttinger Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 2.7 Luttinger Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 3 Wannier Function and Effective Mass Approximation . . . . . 115 3.1 Wannier Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 3.2 Effective-mass Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 3.3 Shallow Impurity Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 3.4 Impurity Levels in Ge and Si . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 3.4.1 Valley{Orbit Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . 127 3.4.2 Central Cell Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 3.5 Electron Motion under an External Field . . . . . . . . . . . . . . . . . 131 3.5.1 Group Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 3.5.2 Electron Motion under an External Force . . . . . . . . . . . . 135 3.5.3 Electron Motion and Effective Mass . . . . . . . . . . . . . . . . 138 4 Optical Properties 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 4.1 Reection and Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 4.2 Direct Transition and Absorption Coefficient . . . . . . . . . . . . . . . 145 4.3 Joint Density of States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 4.4 Indirect Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 4.5 Exciton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 4.5.1 Direct Exciton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 4.5.2 Indirect Exciton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 4.6 Dielectric Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 4.6.1 E0, E0 + Δ0 Edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 <4.6.2 E1 and E1 + & lt;Δ1 Edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 4.6.3 E2 Edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 4.6.4 Exciton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 4.7 Piezobirefringence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 4.7.1 Phenomenological Theory of Piezobirefringence . . . . . . 177 4.7.2 Deformation Potential Theory . . . . . . . . . . . . . . . . . . . . . 178 4.7.3 Stress-Induced Change in Energy Band Structure . . . . . 181 5 Optical Properties 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 5.1 Modulation Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 5.1.1 Electro-optic Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 5.1.2 Franz{Keldysh Effe ct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 Contents XI 5.1.3 Modulation Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . 195 5.1.4 Theory of Electroreectance and Third-Derivative Form of Aspnes . . . . . . . . . . . . . . . 198 5.2 Raman Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 5.2.1 Selection Rule of Raman Scattering . . . . . . . . . . . . . . . . . 209 5.2.2 Quantum Mechanical Theory of Raman Scattering . . . 214 5.2.3 Resonant Raman Scattering . . . . . . . . . . . . . . . . . . . . . . . 219 5.3 Brillouin Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 5.3.1 Scattering Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 5.3.2 Brillouin Scattering Experiments . . . . . . . . . . . . . . . . . . . 228 5.3.3 Resonant Brillouin Scattering . . . . . . . . . . . . . . . . . . . . . . 231 5.4 Polaritons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 5.4.1 Phonon Polaritons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 5.4.2 Exciton Polaritons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 5.5 Free{Carrier Absorption and Plasmon . . . . . . . . . . . . . . . . . . . . . 241 6 Electron{Phonon Interaction and Electron Transport . . . . . 247 6.1 Lattice Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 6.1.1 Acoustic Mode and Optical Mode . . . . . . . . . . . . . . . . . . 247 6.1.2 Harmonic Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 252 6.2 Boltzmann Transport Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 261 6.2.1 Collision Term and Relaxation Time . . . . . . . . . . . . . . . . 262 6.2.2 Mobility and Electrical Conductivity . . . . . . . . . . . . . . . . 265 6.3 Scattering Probability and Transition Matrix Element . . . . . . . 270 6.3.1 Transition Matrix Element . . . . . . . . . . . . . . . . . . . . . . . . 270 6.3.2 Deformation Potential Scattering (Acoustic Phonon Scattering) . . . . . . . . . . . . . . . . . . . . . . 273 6.3.3 Ionized Impurity Scattering . . . . . . . . . . . . . . . . . . . . . . . . 275 6.3.4 Piezoelectric Potential Scattering . . . . . . . . . . . . . . . . . . . 279 6.3.5 Non{polar Optical Phonon Scattering . . . . . . . . . . . . . . . 282 6.3.6 Polar Optical Phonon Scattering . . . . . . . . . . . . . . . . . . . 283 6.3.7 Inter{Valley Phonon Scattering . . . . . . . . . . . . . . . . . . . . 288 6.3.8 Deformation Potential in Degenerate Bands. . . . . . . . . . 289 6.3.9 Theoretical Calculation of Deformation Potentials . . . . 291 6.3.10 Electron{Electron Interaction and Plasmon Scattering 296 6.3.11 Alloy Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 6.4 Scattering Rate and Relaxation Time . . . . . . . . . . . . . . . . . . . . . 304 6.4.1 Acoustic Phonon Scattering . . . . . . . . . . . . . . . . . . . . . . . 308 6.4.2 Non{polar Optical Phonon Scattering . . . . . . . . . . . . . . . 313 6.4.3 Polar Optical Phonon Scattering . . . . . . . . . . . . . . . . . . . 315 6.4.4 Piezoelectric Potential Scattering . . . . . . . . . . . . . . . . . . 317 6.4.5 Inter{Valley Phonon Scattering . . . . . . . . . . . . . . . . . . . . 318 6.4.6 Ionized Impurity Scattering . . . . . . . . . . . . . . . . . . . . . . . . 321 6.4.7 Neutral Impurity Scattering . . . . . . . . . . . . . . . . . . . . . . . 322 6.4.8 Plasmon Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 23 XII Contents 6.4.9 Alloy Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 6.5 Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 6.5.1 Acoustic Phonon Scattering . . . . . . . . . . . . . . . . . . . . . . . 326 6.5.2 Non{Polar Optical Phonon Scattering . . . . . . . . . . . . . . . 327 6.5.3 Polar Optical Phonon Scattering . . . . . . . . . . . . . . . . . . . 330 6.5.4 Piezoelectric Potential Scattering . . . . . . . . . . . . . . . . . . . 332 6.5.5 Inter{Valley Phonon Scattering . . . . . . . . . . . . . . . . . . . . 333 6.5.6 Ionized Impurity Scattering . . . . . . . . . . . . . . . . . . . . . . . . 335 6.5.7 Neutral Impurity Scattering . . . . . . . . . . . . . . . . . . . . . . . 336 6.5.8 Plasmon Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 6.5.9 Alloy Scatte ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 6.5.10 Electron Mobility in GaN . . . . . . . . . . . . . . . . . . . . . . . . . 339 7 Magnetotransport Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 7.1 Phenomenological Theory of the Hall Effect . . . . . . . . . . . . . . . . 343 7.2 Magnetoresistance Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 7.2.1 Theory of Magnetoresistance . . . . . . . . . . . . . . . . . . . . . . . 349 7.2.2 General Solutions for a Weak Magnetic Field . . . . . . . . 350 7.2.3 Case of Scalar Effective Mass . . . . . . . . . . . . . . . . . . . . . . 351 7.2.4 Magnetoresistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 7.3 Shubnikov{de Haas Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 7.3.1 Theory of Shubnikov{de Haas Effect . . . . . . . . . . . . . . . . 357 7.3.2 Longitudinal Magnetoresistance Con_guration . . . . . . . 361 7.3.3 Transverse Magnetoresistance Con_guration . . . . . . . . . 363 7.4 Magnetophonon Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 7.4.1 Experiments and Theory of Magnetophonon Resonance 367 7.4.2 Various Types of Magnetophonon Resonance . . . . . . . . . 375 7.4.3 Magnetophonon Resonance under High Electric and High Magnetic Fields . . . . . . . 380 7.4.4 Polaron Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385 8 Quantum Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389 8.1 Historical Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389 8.2 Two-Dimensional Electron Gas Systems . . . . . . . . . . . . . . . . . . . 390 8.2.1 Two-Dimensional Electron Gas< mos="" inversion="" layer="" .="" 390 8.2.2 Quantum Wells and HEMT. . . . . . . . . . . . . . . . . . . . . . . . 400 8.3 Transport Phenomena in a Two-Dimensional Electron Gas. . . 407 8.3.1 Fundamental Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 407 8.3.2 Scattering Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410 8.3.3 Mobility of a Two-Dimensional Electron Gas . . . . . . . . . 435 8.4 Superlattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442 8.4.1 Kronig{Penney Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442 8.4.2 Effect of Brillouin Zone Folding . . . . . . . . . . . . . . . . . . . . 444 8.4.3 Tight Binding Approximation . . . . . . . . . . . . . . . . . . . . . . 447 Contents XIII 8.4.4 sp3 s_ Tight Binding Approximation . . . . . . . . . . . . . . . . 450 8.4.5 Energy Ba nd Calculations for Superlattices . . . . . . . . . . 451 8.4.6 Second Nearest-Neighbor sp3 Tight Binding Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457 8.5 Mesoscopic Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463 8.5.1 Mesoscopic Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463 8.5.2 De_nition of Mesoscopic Region . . . . . . . . . . . . . . . . . . . . 466 8.5.3 Landauer Formula and Buttiker{Landauer Formula . . . 468 8.5.4 Research in the Mesoscopic Region . . . . . . . . . . . . . . . . . 473 8.5.5 Aharonov{Bohm Effect (AB Effect) . . . . . . . . . . . . . . . . . 474 8.5.6 Ballistic Electron Transport . . . . . . . . . . . . . . . . . . . . . . . 475 8.6 Quantum Hall Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477 8.7 Coulomb Blockade and Single El ectron Transistor . . . . . . . . . . 489 8.8 Quantum Dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495 8.8.1 Addition Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495 8.8.2 Exact Diagonalization Method . . . . . . . . . . . . . . . . . . . . . 499 8.8.3 Hamiltonian for Electrons in a Quantum Dot . . . . . . . . 501 8.8.4 Diagonalization of N Electrons Hamiltonian Matrix . . 504 8.8.5 Electronic States in Quantum Dots . . . . . . . . . . . . . . . . . 505 8.8.6 Quantum Dot States in Magnetic Field . . . . . . . . . . . . . 507 8.8.7 Electronic States in Elliptic and Triangular Quantum Dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508 9 Light Emission and Laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513 9.1 Einstein Coefficients A and B & lt;. . . . . . . . . . . . . . . . . . . . . . . . . . . . 514 9.2 Spontaneous Emission and Stimulated Emission . . . . . . . . . . . 516 9.3 Band Tail Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522 9.4 Luminescence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526 9.4.1 Luminescence due to Band to Band Transition . . . . . . . 527 9.4.2 Luminescence due to Excitons . . . . . . . . . . . . . . . . . . . . . 528 9.4.3 Luminescence via Impurities . . . . . . . . . . . . . . . . . . . . . . . 530 9.4.4 Luminescence in GaP and GaAsP via N traps . . . . . . . . 535 9.4.5 Luminescence from GaInNAs . . . . . . . . . . . . . . . . . . . . . . 538 9.4.6 Light Emitting Diodes (LEDs) in Visible Region . . . . . 540 9.5 Heterostructure Optical Waveguide . . . . . . . . . . . . . . . . . . . . . . . 541 9.5.1 Wave Equations f or Planar Waveguide . . . . . . . . . . . . . . 542 9.5.2 Transverse Electric Modes . . . . . . . . . . . . . . . . . . . . . . . . . 546 9.5.3 Transverse Magnetic Modes . . . . . . . . . . . . . . . . . . . . . . . . 547 9.5.4 Effective Refractive Index . . . . . . . . . . . . . . . . . . . . . . . . . 548 9.5.5 Con_nement Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550 9.5.6 Laser Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552 9.6 Stimulated Emission in Quantum Well Structures . . . . . . . . . . 555 9.6.1 Con_nement in Quantum Well . . . . . . . . . . . . . . . . . . . . 557 9.6.2 Optical Transition in Quantum Well Structures . . . . . . 561 9.6.3 Reduced Density of States and Gain . . . . . . . . . . . . . . . . 566 XIV Contents 9.6.4 Strain Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569 9.7 Wurtzite Semiconductor Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . 574 9.7.1 Energy Band Structure of Wurtzite Crystals . . . . . . . . . 575 9.7.2 Bowing of the Band Gaps and the Effective Masses in the Ternary Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582 9.7.3 Valence Band Structure in the Presence of Strain . . . . . 585 9.7.4 Optical Gain of Nitride Wuantum Well Structures . . . . 593 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595 A Delta Function and Fourier Transform . . . . . . . . . . . . . . . . . . . . 595 A.1 Dirac Delta Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595 A.2 Cyclic Boundary Condition and Delta Function . . . . . . 59 7 A.3 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600 B Gamma Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602 C Uniaxial Stress and Strain Components in Cubic Crystals . . . 603 D Boson Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606 E Random Phase Approximation and Lindhard Dielectric Function . . . . . . . . . . . . . . . . . . . . . . . . . 611 F Density Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613 G Spontaneous and Stimulated Emission Rates . . . . . . . . . . . . . . . 615 H Spin{Orbit Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625 

About the Author :
Chihiro Hamaguchi graduated from Electrical Engineering (BS) in 1961, and MS Degree in 1963, and Graduate School of Engineering with Ph.D. Degree 1n 1966, all from Osaka University. He served as a research associate of Engineering Science in 1966, and an associate professor of Electronic Engineering in 1967, of Osaka University. He was a visiting research associate of Physics Department of Purdue University (USA), from 1967 to 1969. He was appointed full professor of Electronic Engineering Department of Osaka University in 1985 and retired in 2001, awarded Professor Emeritus. He was employed as an advisory board member of Sharp Corporation form 2001 till 2014, and also a visiting professor of Kochi University of Technology from 2001 till now. His major field of research is hot carrier transport, magnetotransport, modulation spectroscopy of quantum structures, and quantum transport in heterostructures, energy band calculations of superlattices and nitrides, publishing more than 350 papers. He was elected as 1990: Fellow of the American Physical Society (1990), Fellow of the Institute of  Electrical and Electronics Engineers (IEEE) (1992), Fellow of the Institute of Physics, U.K .(1999), and Fellow of the Japan Society of Applied Physics (2008). He received the Award of Gold Rays with Neck Ribbon” (Zuiho-Chuju Shou in Japanese) from Japanese Government and the Emeror in 2016. He published several text books in Japanese, such as Introduction to Electronics and Physics of Materials, Semiconductor Devisce Physics, and Electromagnetic Theory (to be published). He is a Fellow of American Physical Soviety, Instutute of Physics (U.K.), Institute of Electrical and Electronics Engineers (IEEE, U.S.A), and Japan Society of Applied Physics. He received the Award of Gold Rays with Neck Ribbon” (Zuiho-Chuju Shou in Japanese) in 2016.


Best Sellers


Product Details
  • ISBN-13: 9783319668598
  • Publisher: Springer International Publishing AG
  • Publisher Imprint: Springer International Publishing AG
  • Edition: Revised edition
  • Language: English
  • Returnable: Y
  • Weight: 1241 gr
  • ISBN-10: 3319668595
  • Publisher Date: 08 Dec 2017
  • Binding: Hardback
  • Height: 235 mm
  • No of Pages: 709
  • Series Title: Graduate Texts in Physics
  • Width: 155 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Basic Semiconductor Physics: (Graduate Texts in Physics)
Springer International Publishing AG -
Basic Semiconductor Physics: (Graduate Texts in Physics)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Basic Semiconductor Physics: (Graduate Texts in Physics)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!