Buy Machine Learning under Resource Constraints - Applications
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Databases > Data mining > Machine Learning under Resource Constraints - Applications: (De Gruyter STEM)
Machine Learning under Resource Constraints - Applications: (De Gruyter STEM)

Machine Learning under Resource Constraints - Applications: (De Gruyter STEM)


     0     
5
4
3
2
1



International Edition


X
About the Book

Machine Learning under Resource Constraints addresses novel machine learning algorithms that are challenged by high-throughput data, by high dimensions, or by complex structures of the data in three volumes. Resource constraints are given by the relation between the demands for processing the data and the capacity of the computing machinery. The resources are runtime, memory, communication, and energy. Hence, modern computer architectures play a significant role. Novel machine learning algorithms are optimized with regard to minimal resource consumption. Moreover, learned predictions are executed on diverse architectures to save resources. It provides a comprehensive overview of the novel approaches to machine learning research that consider resource constraints, as well as the application of the described methods in various domains of science and engineering. Volume 3 describes how the resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples. In the areas of health and medicine, it is demonstrated how machine learning can improve risk modelling, diagnosis, and treatment selection for diseases. Machine learning supported quality control during the manufacturing process in a factory allows to reduce material and energy cost and save testing times is shown by the diverse real-time applications in electronics and steel production as well as milling. Additional application examples show, how machine-learning can make traffic, logistics and smart cities more effi cient and sustainable. Finally, mobile communications can benefi t substantially from machine learning, for example by uncovering hidden characteristics of the wireless channel.

About the Author :
Katharina Morik received her doctorate from the University of Hamburg in 1981 and her habilitation from the TU Berlin in 1988. In 1991, she established the chair of Artificial Intelligence at the TU Dortmund University. She is a pioneer of machine learning contributing substantially to inductive logic programming, support vector machines, probabilistic graphical models. In 2011, she acquired the Collaborative Research Center SFB 876 "Providing Information by Resource-Constrained Data Analysis", of which she is the spokesperson. and computing architectures together so that machine learning models may be executed or even trained on resource restricted devices. It consists of 12 projects and a graduate school for more than 50 Ph. D. students. She is a spokesperson of the Competence Center for Machine Learning Rhein Ruhr (ML2R) and coordinator of the German competence centers for AI. She is the author of more than 200 publications in prestigious journals and conferences. She was a founding member, Program Chair and Vice Chair of the conference IEEE International Conference on Data Mining (ICDM) and is a member of the steering committee of and was Program Chair of ECML PKDD. Together with Volker Markl, Katharina Morik heads the working group "Technological Pioneers" of the platform "Learning Systems and Data Science" of the BMBF. Prof. Morik has been a member of the Academy of Technical Sciences since 2015 and of the North Rhine-Westphalian Academy of Sciences and Arts since 2016. She has been awarded Fellow of the German Society of Computer Science GI e.V. in 2019. Christian Wietfeld: Prof. Christian Wietfeld is head of the Chair of Communication Networks at TU Dortmund University since 2005. He graduated and received his doctorate from RWTH Aachen. His research interest focusses on future mobile communications networks, especially for safety-critical applications, e.g., in road traffic, logistics, energy technology, and robotics. His research work is documented in numerous publications as well as patents (13 international best paper awards, 5300+ citations). He has also co-founded several award-winning start-ups. Currently, the focus of his research is on 5G and 6G networks, e.g., in the 5G Competence Center funded by the state of North Rhine-Westphalia, where the potential of 5G technology for industrial production and other scenarios with particularly demanding requirements is being explored. Being the Co-Speaker of the Collaborative Research Center 876, he is investigating the use of novel artificial intelligence methods for reliable mobile networks of future generations. Since August 2021, he has been leading the activities of TU Dortmund University in the BMBF-funded 6G Research Hub 6GEM as site spokesperson. Jörg Rahnenführer: Prof. Dr. Jörg Rahnenführer is professor for "Statistical methods in genetics and chemometrics" at the Department of Statistics at TU Dortmund University. After obtaining a PhD in mathematics from the University of Düsseldorf he worked as a postdoc in Vienna, Berkeley, Omaha, and at the Max Planck Institute for Informatics in Saarbrücken. The respective departments covered a wide range of fields, including mathematics, statistics, biostatistics, genetics, and computer science. His group at TU Dortmund develops and applies in interdisciplinary projects statistical methods mainly for applications in bioinformatics, toxicology, and medicine. He has particularly worked successfully on the meaningful exploitation of high-dimensional omics data and as a member of the SFB 876 on hyperparameter optimization in statistical learning methods. Since 2021 he is the spokesperson of the DFG-funded Research Training Group (RTG) 2624 "Biostatistical Methods for High-Dimensional Data in Toxicology".



Product Details
  • ISBN-13: 9783110785975
  • Publisher: De Gruyter
  • Publisher Imprint: de Gruyter
  • Height: 240 mm
  • No of Pages: 478
  • Returnable: Y
  • Weight: 798 gr
  • ISBN-10: 3110785978
  • Publisher Date: 31 Dec 2022
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Series Title: De Gruyter STEM
  • Width: 170 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Machine Learning under Resource Constraints - Applications: (De Gruyter STEM)
De Gruyter -
Machine Learning under Resource Constraints - Applications: (De Gruyter STEM)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Machine Learning under Resource Constraints - Applications: (De Gruyter STEM)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!