Computer Engineering Machine Learning and Neural Networks
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Electronics and communications engineering > Electronics engineering > Electronics: circuits and components > Computer Engineering Machine Learning and Neural Networks
Computer Engineering Machine Learning and Neural Networks

Computer Engineering Machine Learning and Neural Networks


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This is the first textbook focusing on practicality of machine learning (ML) and deep neural networks (DNN), by introducing methods that enable engineering applications of ML and DNN models. The authors describe many methodologies that are widely used in designing, training, and deploying of these models and discuss their applicability under various contexts. Coverage begins with the basic knowledge of machine learning and deep neural networks and their applications in solving practical engineering problems. It then proceeds through a series of computer engineering methods commonly used in developing machine learning and deep neural network models. The book also explains how to improve the training and inference performance in terms of model accuracy, size, runtime, etc. by considering various requirements and availability of data in the applications. Techniques that are widely adopted in both industry and academia are discussed. Tutorials and projects designed to practice the introduced techniques are provided using popular development frameworks of machine learning. 

  • Emphasizes practice over theoretical foundations, making content accessible to engineering students and engineers;

  • Includes in-depth discussion of popular DNN models and their applications;

  • Discusses engineering methods and tricks widely adopted in practice for using ML and DNN to solve engineering problems.



Table of Contents:

Introduction.- Perceptron and back propagation.- Image feature and 2d convolution.- Convolutional neural network.- Efficient neural architecture.- Recurrent neural network and language models.- Transfer learning.- Generative adversarial network gan.- Automl and neural architecture search.- Distributed computing and federated learning.- Summary.



About the Author :

Yiran Chen is the John Cocke Distinguished Professor of Electrical and Computer Engineering at Duke University. He serves as the Principal Investigator and Director of the NSF AI Institute for Edge Computing Leveraging Next Generation Networks (Athena) and Co-Director of the Duke Center for Computational Evolutionary Intelligence (DCEI). His research group focuses on innovations in emerging memory and storage systems, machine learning and neuromorphic computing, and edge computing. Dr. Chen has authored over 700 publications and holds 96 U.S. patents. His work has received widespread recognition, including two Test-of-Time Awards and 14 Best Paper/Poster Awards. He is the recipient of the IEEE Circuits and Systems Society’s Charles A. Desoer Technical Achievement Award and the IEEE Computer Society’s Edward J. McCluskey Technical Achievement Award. He also serves as the inaugural Editor-in-Chief of the IEEE Transactions on Circuits and Systems for Artificial Intelligence (TCASAI) and the founding Chair of the IEEE Circuits and Systems Society’s Machine Learning Circuits and Systems (MLCAS) Technical Committee. Dr. Chen is a Fellow of the AAAS, ACM, IEEE, and NAI, and a member of the European Academy of Sciences and Arts.

Hai (Helen) Li is the Marie Foote Reel E’46 Distinguished Professor and Department Chair of the Electrical and Computer Engineering Department at Duke University. She received her B.S. and M.S. from Tsinghua University and her Ph.D. from Purdue University. Her research interests include neuromorphic circuits and systems for brain-inspired computing, machine learning acceleration and trustworthy AI, conventional and emerging memory design and architecture, and software and hardware co-design. Dr. Li served/serves as the Associate Editor-in-Chief and Associate Editor for multiple IEEE and ACM journals. She was the General Chair or Technical Program Chair of numerous IEEE/ACM conferences and the Technical Program Committee member of over 30 international conference series. Dr. Li is a Distinguished Lecturer of the IEEE CAS Society and a Distinguished Speaker of ACM. Dr. Li is a recipient of the IEEE Edward J. McCluskey Technical Achievement Award, Ten Year Retrospective Influential Paper Award from ICCAD, TUM-IAS Hans Fischer Fellowship from Germany, ELATE Fellowship, nine best paper awards, and another ten best paper nominations. Dr. Li is a fellow of ACM, AAAS, IEEE, and NAI.


Best Sellers


Product Details
  • ISBN-13: 9783032209788
  • Publisher: Springer Nature Switzerland AG
  • Publisher Imprint: Springer Nature Switzerland AG
  • ISBN-10: 3032209781
  • Publisher Date: 06 May 2026


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Computer Engineering Machine Learning and Neural Networks
Springer Nature Switzerland AG -
Computer Engineering Machine Learning and Neural Networks
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Computer Engineering Machine Learning and Neural Networks

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!