Classical and Bayesian Statistical Approaches in Infectious Disease Data Analysis
Home > Mathematics and Science Textbooks > Mathematics > Probability and statistics > Classical and Bayesian Statistical Approaches in Infectious Disease Data Analysis
Classical and Bayesian Statistical Approaches in Infectious Disease Data Analysis

Classical and Bayesian Statistical Approaches in Infectious Disease Data Analysis


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This open access book is a comprehensive guide that delves into the statistical methodologies used in public health and infectious disease surveillance. It contrasts the foundational principles and methodologies of both Bayesian and Frequentist statistical approaches, providing a detailed exploration of how these methods are applied to the analysis and interpretation of infectious disease data. The book offers practical guidance on the application of these methods in real-life studies, both for surveillance and research purposes. It highlights the strengths and limitations of each approach and showcases how they can be effectively utilized in various scenarios. A set of R instructions and data examples to reproduce the analyses are provided. Among the topics covered are: Generalized Linear Models in Infectious Disease Analysis and Surveillance: Methods for Independent Data Machine Learning Models for Probabilistic Inference and Prediction Generalized Linear Models in Infectious Disease Analysis and Surveillance: Methods for Correlated Data Residuals and Overdispersion in Generalized Linear Models Interrupted Time Series Model in Infectious Disease Research and Surveillance Generalized Linear Models with Missing Data This topic is of particular importance to the field at this time due to the increasing need for accurate analysis and interpretation of infectious disease data, which is crucial for effective decision-making and policy formulation. Classical and Bayesian Statistical Approaches in Infectious Disease Data Analysis is primarily intended for public health professionals in local, national or international agencies; researchers and academics; students; and veterinary and one-health specialists. These readers would find this book valuable for its in-depth analysis, practical guidance, and the critical insights it provides into the application of statistical methods in the ever-evolving field of infectious disease surveillance.

Table of Contents:
Chapter 1 Bayesian and Frequentist Approaches in Infectious Disease Data Analysis.- Chapter 2 Generalized Linear Models in Infectious Disease Analysis and Surveillance: Methods for Independent Data.- Chapter 3 Variable Selection in Generalized Linear Models.- Chapter 4 Machine Learning Models for Probabilistic Inference and Prediction.- Chapter 5 Generalized Linear Models in Infectious Disease Analysis and Surveillance: Methods for Correlated Data.- Chapter 6 Residuals and Overdispersion in Generalized Linear Models.- Chapter 7 Interrupted Time Series Model in Infectious Disease Research and Surveillance.- Chapter 8 Generalized Linear Models with Missing Data.

About the Author :
Noor Muhammad Khan is a doctoral researcher in Biostatistics and Clinical Epidemiology at the University of Padova in Italy. He works with diverse health data such as infectious disease registries, longitudinal electronic records, patient-reported outcomes, and high-resolution neural signals and turns these information sources into evidence that guides clinical practice and public health policy. By integrating classical and Bayesian approaches, he applies regression, hierarchical, and time-series models to support infectious disease surveillance. His research demonstrates how rigorous statistical thinking converts methodological advances into practical tools for clinical and epidemiologic investigations.  Ileana Baldi, PhD, is Associate Professor of Medical Statistics at the University of Padova, Italy. With advanced training in statistics and epidemiology, she is an expert in statistical modeling for health and biomedical research. Her work spans both classical and Bayesian frameworks, applied to complex data from clinical trials, electronic health records, and digital health technologies. She is particularly engaged in developing and refining analytical methods that improve the reliability and interpretability of health data. This book reflects her deep understanding of statistical theory and her commitment to making sophisticated modeling approaches both accessible and practical for epidemiologic applications.  Maria Vittoria Chiaruttini is completing her doctoral research in Biostatistics and Clinical Epidemiology at the University of Padova, Italy. Her work focuses on both the design of clinical and epidemiological studies and the application of advanced statistical methods to analyze longitudinal registry data for population health research. By integrating Bayesian inference, hierarchical modeling, and explainable machine learning techniques, she emphasizes transparency in uncertainty quantification and promotes reproducibility. Passionate about translating data into actionable insights, Maria Vittoria is dedicated to bridging methodological rigor with practical impact in clinical decision-making and public health policy.  Dario Gregori is full Professor of Medical Statistics at University of Padova, Italy. After graduation in Statistics at Pennsylvania State University (US) he got a PhD in Applied Statistics in 1995 at University of Firenze. He is Director of the residency program in Medical Statistics and Biometrics and Coordinator of the Ph.D. Program in Specialized and Translational Medicine “G.B. Morgagni” at University of Padova. His interests include clinical predictive modeling and machine learning algorithms for biomedical research, as well as the use of big data for primary and secondary prevention. He holds several grants in this field from national and international agencies. He published more than 700 papers (H-index 54).


Best Sellers


Product Details
  • ISBN-13: 9783032067463
  • Publisher: Springer Nature Switzerland AG
  • Publisher Imprint: Springer Nature Switzerland AG
  • Height: 235 mm
  • No of Pages: 276
  • Returnable: N
  • Returnable: N
  • Returnable: N
  • Returnable: N
  • Width: 155 mm
  • ISBN-10: 3032067464
  • Publisher Date: 13 Nov 2025
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Returnable: N
  • Returnable: N
  • Returnable: N
  • Returnable: N


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Classical and Bayesian Statistical Approaches in Infectious Disease Data Analysis
Springer Nature Switzerland AG -
Classical and Bayesian Statistical Approaches in Infectious Disease Data Analysis
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Classical and Bayesian Statistical Approaches in Infectious Disease Data Analysis

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!