Linear Algebra, Data Science, and Machine Learning - Bookswagon
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Mathematics > Algebra > Linear Algebra, Data Science, and Machine Learning: (Springer Undergraduate Texts in Mathematics and Technology)
37%
Linear Algebra, Data Science, and Machine Learning: (Springer Undergraduate Texts in Mathematics and Technology)

Linear Algebra, Data Science, and Machine Learning: (Springer Undergraduate Texts in Mathematics and Technology)


     0     
5
4
3
2
1



Available


X
About the Book

This text provides a mathematically rigorous introduction to modern methods of machine learning and data analysis at the advanced undergraduate/beginning graduate level. The book is self-contained and requires minimal mathematical prerequisites. There is a strong focus on learning how and why algorithms work, as well as developing facility with their practical applications. Apart from basic calculus, the underlying mathematics — linear algebra, optimization, elementary probability, graph theory, and statistics — is developed from scratch in a form best suited to the overall goals.  In particular, the wide-ranging linear algebra components are unique in their ordering and choice of topics, emphasizing those parts of the theory and techniques that are used in contemporary machine learning and data analysis.  The book will provide a firm foundation to the reader whose goal is to work on applications of machine learning and/or research into the further development of this highly active field of contemporary applied mathematics. To introduce the reader to a broad range of machine learning algorithms and how they are used in real world applications, the programming language Python is employed and offers a platform for many of the computational exercises. Python notebooks complementing various topics in the book are available on a companion GitHub site specified in the Preface, and can be easily accessed by scanning the QR codes or clicking on the links provided within the text. Exercises appear at the end of each section, including basic ones designed to test comprehension and computational skills, while others range over proofs not supplied in the text, practical computations, additional theoretical results, and further developments in the subject.  The Students’ Solutions Manual may be accessed from GitHub. Instructors may apply for access to the Instructors’ Solutions Manual from the link supplied on the text’s Springer website. The book can be used in a junior or senior level course for students majoring in mathematics with a focus on applications as well as students from other disciplines who desire to learn the tools of modern applied linear algebra and optimization. It may also be used as an introduction to fundamental techniques in data science and machine learning for advanced undergraduate and graduate students or researchers from other areas, including statistics, computer science, engineering, biology, economics and finance, and so on.

Table of Contents:
Preface.- 1 Vectors.- 2 Inner Product, Orthogonality, Norm.- 3 Matrices.- 4. How Matrices Interact with Inner Products and Norms.- 5 Eigenvalues and Singular Values.- 6 Basics of Optimization.- 7 Introduction to Machine Learning and Data.- 8 Principal Component Analysis.- 9 Graph Theory and Graph-based Learning.- 10 Neural Networks and Deep Learning.- 11 Advanced Optimization.- Bibliography.- Index.

About the Author :
Jeff Calder received his Ph.D. degree in applied and interdisciplinary mathematics from the University of Michigan under the guidance of Prof. Selim Esedoglu and Prof. Alfred Hero in 2014. Between 2014 and 2016 he was a Morrey Assistant Professor at the University of California, Berkeley, under the mentorship of Lawrence C. Evans and James Sethian. He has been on the faculty of the School of Mathematics at the University of Minnesota since 2016, full professor since 2025, where he has supervised 5 PhD students, 4 postdoctoral scholars, and a number of undergraduate and high school students on research projects. Calder's research interests lie in applied probability, numerical analysis, and partial differential equations, with a specific interest in applications to machine learning and data analysis. Calder has published over 50 articles in journals and conferences spanning pure and applied mathematics and related areas, and holds several patents. His research has been recognized with an NSF Career Award and Alfred P. Sloan Research Fellowship in 2020, a University of Minnesota McKnight Presidential Fellowship and Guillermo E. Borja Award in 2021, and he currently holds the Albert and Dorothy Marden Professorship in Mathematics (2023-2028). Peter J. Olver received his Ph.D. from Harvard University in 1976 under the guidance of Prof. Garrett Birkhoff. After being a Dickson Instructor at the University of Chicago and a postdoc at the University of Oxford, he has been on the faculty of the School of Mathematics at the University of Minnesota since 1980, and a full professor since 1985. He served as the Head of the Department from 2008 to 2020. He has supervised 23 Ph.D. students, and mentored over 30 postdocs, visiting students and scholars from around the world, as well as supervising numerous undergraduate research projects. He is a Fellow of the American Mathematical Society, the Society for Industrial and Applied Mathematics (SIAM), the Institute of Physics, UK, and the Asia-Pacific Artificial Intelligence Association (AAIA). Over the years, he has contributed to a wide range of fields, including symmetry and Lie theory, partial differential equations, the calculus of variations, mathematical physics, fluid mechanics, elasticity, quantum mechanics, Hamiltonian mechanics, geometric numerical methods, differential geometry, classical invariant theory, algebra, computer vision and image processing, anthropology, and beyond. He is the author of over 160 papers in refereed journals, and has given more than 500 invited lectures on his research at conferences, universities, colleges, and institutes throughout the world. He was named a "Highly Cited Researcher" by Thomson-ISI in 2003, and an inaugural "Highly Ranked Scholar" by ScholarGPS in 2024.. He has written 6 books, including the definitive text on Applications of Lie Groups to Differential Equations, and two additional undergraduate texts: Partial Differential Equations and Applied Linear Algebra, the latter coauthored with his wife, Chehrzad Shakiban.


Best Sellers


Product Details
  • ISBN-13: 9783031937637
  • Publisher: Springer International Publishing AG
  • Publisher Imprint: Springer International Publishing AG
  • Height: 254 mm
  • No of Pages: 629
  • Series Title: Springer Undergraduate Texts in Mathematics and Technology
  • ISBN-10: 3031937635
  • Publisher Date: 26 Aug 2025
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Width: 178 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Linear Algebra, Data Science, and Machine Learning: (Springer Undergraduate Texts in Mathematics and Technology)
Springer International Publishing AG -
Linear Algebra, Data Science, and Machine Learning: (Springer Undergraduate Texts in Mathematics and Technology)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Linear Algebra, Data Science, and Machine Learning: (Springer Undergraduate Texts in Mathematics and Technology)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!