Research in Computational Molecular Biology
Home > Mathematics and Science Textbooks > Biology, life sciences > Life sciences: general issues > Computational biology / bioinformatics > Research in Computational Molecular Biology: 29th International Conference, RECOMB 2025, Seoul, South Korea, April 26–29, 2025, Proceedings(15647 Lecture Notes in Computer Science)
Research in Computational Molecular Biology: 29th International Conference, RECOMB 2025, Seoul, South Korea, April 26–29, 2025, Proceedings(15647 Lecture Notes in Computer Science)

Research in Computational Molecular Biology: 29th International Conference, RECOMB 2025, Seoul, South Korea, April 26–29, 2025, Proceedings(15647 Lecture Notes in Computer Science)

|
     0     
5
4
3
2
1




International Edition


About the Book

This book constitutes the proceedings of the 29th Annual International Conference on Research in Computational Molecular Biology, RECOMB 2025, held in Seoul, South Korea, during April 26–29, 2025. The 14 full papers and 41 short papers were carefully reviewed and selected from 339 submissions. They focus on advances in computational biology and applications in molecular biology and medicine. The conference aims at bridging the computational, mathematical, statistical, and biological sciences, and bringing together researchers, professionals, students and industrial practitioners from all over the world for interaction and exchange of new developments in all areas of bioinformatics and computational biology. 

Table of Contents:
Orientation-Aware Graph Neural Networks for Protein Structure Representation Learning.- Active Learning for Protein Structure Prediction.- Sequence-based TCR-Peptide Representations Using Cross-Epitope Contrastive Fine-tuning of Protein Language Models.- DualGOFiller: A Dual-Channel Graph Neural Network with Contrastive Learning for Enhancing Function Prediction in Partially Annotated Proteins.- Detecting antimicrobial resistance through MALDI-TOF mass spectrometry with statistical guarantees using conformal prediction.- Hierarchical Spatio-Temporal State-Space Modeling for fMRI Analysis.- A Phylogenetic Approach to Genomic Language Modeling.- Dynamic Programming Algorithms for Fast and Accurate Cell Lineage Tree Reconstruction from CRISPR-based Lineage Tracing Data.- Old dog, new tricks: Exact seeding strategy improves RNA design performances.- Scalable and Interpretable Identification of Minimal Undesignable RNA Structure Motifs with Rotational Invariance.- An Exact and Fast SAT Formulation for the DCJ Distance.- Improved pangenomic classification accuracy with chain statistics.- Dynamic μ-PBWT: Dynamic Run-length Compressed PBWT for Biobank Scale Data.- Prokrustean Graph: A substring index for rapid k-mer size analysis.- Rag2Mol: Structure-based drug design based on Retrieval Augmented Generation.- Rewiring protein sequence and structure generative models to enhance protein stability prediction.- Learning a CoNCISE language for small molecule binding and function.- An adversarial scheme for integrating multi-modal data on protein function.- Decoding the Functional Interactome of Non-Model Organisms with PHILHARMONIC.- The tree labeling polytope: a unified approach to ancestral reconstruction problems.- ScisTree2: An Improved Method for Large-scale Inference of Cell Lineage Trees and Genotype Calling from Noisy Single Cell Data.- OMKar: optical map based automated karyotyping of genomes to identify constitutional disorders.- TarDis: Achieving Robust and Structured Disentanglement of Multiple Covariates.- devider: long-read reconstruction of many diverse haplotypes.- Pharming: Joint Clonal Tree Reconstruction of SNV and CNA Evolution from Single-cell DNA Sequencing of Tumors.- GEM-Finder: dissecting GWAS variants via long-range interacting cis-regulatory elements with differentiation-specific genes.- Learning multi-cellular representations of single-cell transcriptomics data enables characterization of patient-level disease states.- cfDecon: Accurate and interpretable methylation based cell type deconvolution for cell-free DNA.- Inferring cell differentiation maps from lineage tracing data.- Alignment-free estimation of read to genome distances and its applications.- ML-MAGES: A machine learning framework for multivariate genetic association analyses with genes and effect size shrinkage.- TX-Phase: Secure Phasing of Private Genomes in a Trusted Execution Environment.- Hyper-k-mers: efficient streaming k-mers representation.- Characterizing the Solution Space of Migration Histories of Metastatic Cancers with MACH2.- Causal Disentanglement of Treatment Effects in Single-cell RNA Sequencing through Counterfactual Inference.- Integration and querying of multimodal single-cell data with PoE-VAE.- ralphi: a deep reinforcement learning framework for haplotype assembly.- GeneCover: A Combinatorial Approach for Label-free Marker Gene Selection.- Joint imputation and deconvolution of gene expression across spatial transcriptomics platforms.- ScatTR: Estimating the Size of Long Tandem Repeat Expansions from Short-Reads.- Learning Latent Trajectories in Developmental Time Series with Hidden-Markov Optimal Transport.- Unified integration of spatial transcriptomics across platforms.- Tree reconstruction guarantees from CRISPR-Cas9 lineage tracing data using Neighbor-Joining.- mcRigor: a statistical method to enhance the rigor of metacell partitioning in single-cell data analysis.- TissueMosaic enables cross-sample differential analysis of spatial transcriptomics datasets through self-supervised representation learning.- Accurate Detection of Tandem Repeats from Error-Prone Sequences with EquiRep.- ALPINE: an interpretable approach for decoding phenotypes from multi-condition sequencing data.- Synthetic control removes spurious discoveries from double dipping in single-cell and spatial transcriptomics data analyses.- Integer programming framework for pangenome-based genome inference.- A Partition Function Algorithm to Evaluate Inferred Subclonal Structures in Single-Cell Sequencing Data.- Untying Rates of Gene Gain and Loss Leads to a New Phylogenetic Approach.- Learning maximally spanning representations improves protein function annotation.- Optimal marker genes for c-separated cell types.- Bayesian Aggregation of Multiple Annotations Enhances Rare Variant Association Testing.- Steamboat: Attention-Based Multiscale Delineation of Cellular Interactions in Tissues.


Best Sellers


Product Details
  • ISBN-13: 9783031902512
  • Publisher: Springer International Publishing AG
  • Publisher Imprint: Springer International Publishing AG
  • Height: 235 mm
  • No of Pages: 440
  • Series Title: 15647 Lecture Notes in Computer Science
  • Sub Title: 29th International Conference, RECOMB 2025, Seoul, South Korea, April 26–29, 2025, Proceedings
  • ISBN-10: 3031902513
  • Publisher Date: 25 Apr 2025
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Series Title: Lecture Notes in Bioinformatics
  • Width: 155 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Research in Computational Molecular Biology: 29th International Conference, RECOMB 2025, Seoul, South Korea, April 26–29, 2025, Proceedings(15647 Lecture Notes in Computer Science)
Springer International Publishing AG -
Research in Computational Molecular Biology: 29th International Conference, RECOMB 2025, Seoul, South Korea, April 26–29, 2025, Proceedings(15647 Lecture Notes in Computer Science)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Research in Computational Molecular Biology: 29th International Conference, RECOMB 2025, Seoul, South Korea, April 26–29, 2025, Proceedings(15647 Lecture Notes in Computer Science)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!