Continual and Reinforcement Learning for Edge AI
Home > Computing and Information Technology > Computer science > Artificial intelligence > Continual and Reinforcement Learning for Edge AI: Framework, Foundation, and Algorithm Design(Synthesis Lectures on Learning, Networks, and Algorithms)
Continual and Reinforcement Learning for Edge AI: Framework, Foundation, and Algorithm Design(Synthesis Lectures on Learning, Networks, and Algorithms)

Continual and Reinforcement Learning for Edge AI: Framework, Foundation, and Algorithm Design(Synthesis Lectures on Learning, Networks, and Algorithms)


     0     
5
4
3
2
1



International Edition


X
About the Book

This book provides a comprehensive introduction to continual and reinforcement learning for edge AI, which investigates how to build an AI agent that can continuously solve new learning tasks and enhance the AI at resource-limited edge devices. The authors introduce readers to practical frameworks and in-depth algorithmic foundations. The book surveys the recent advances in the area, coming from both academic researchers and industry professionals. The authors also present their own research findings on continual and reinforcement learning for edge AI. The book also covers the practical applications of the topic and identifies exciting future research opportunities.

Table of Contents:
Introduction to Continual and Reinforcement Learning for Edge AI.- Algorithmic and Theoretical Foundations.- Federated Continual Learning.- On-device Continual Learning.- Online Meta-Learning.- Warm-start Reinforcement Learning.- Continual Reinforcement Learning.- Continual and Reinforcement Learning for Edge AI with Pre-trained Large Language Models.

About the Author :
Hang Wang is a Ph.D. candidate in the Department of Electrical and Computer Engineering at the University of California, Davis. He received his B.E. from the University of Science and Technology of China (USTC). His research aims to establish a fundamental understanding of reinforcement learning, multi-agent systems, and human-AI interaction, as well as practical applications such asautonomous driving and edge computing. His contributions have been published in NeurIPS, AAMAS. His recent work on Warm-start Reinforcement Learning also garnered attention and acclaim via an oral presentation at ICML. Sen Lin, Ph.D., is an Assistant Professor in the Department of Computer Science at University of Houston. He received his Ph.D. degree from Arizona State University, M.S. from HKUST and B.E. from Zhejiang University. His research interests broadly fall in the intersection of machine learning and wireless networking. Currently, his research focuses on developing algorithms and theories in continual learning, meta-learning, reinforcement learning, adversarial machine learning and bilevel optimization, with applications in multiple domains, e.g., edge computing, security, network control. Junshan Zhang, Ph.D. is a Professor in the ECE Department at the University of California, Davis. He received his Ph.D. from the School of ECE at Purdue University. His research interests fall in the general field of information networks and data science, including edge intelligence, reinforcement learning, continual learning, network optimization and control, and game theory, with applications in connected and automated vehicles, 5G and beyond, wireless networks, IoT data privacy/security, and smart grid.


Best Sellers


Product Details
  • ISBN-13: 9783031843624
  • Publisher: Springer International Publishing AG
  • Publisher Imprint: Springer International Publishing AG
  • Height: 240 mm
  • No of Pages: 265
  • Series Title: Synthesis Lectures on Learning, Networks, and Algorithms
  • Width: 168 mm
  • ISBN-10: 3031843622
  • Publisher Date: 21 May 2025
  • Binding: Hardback
  • Language: English
  • Returnable: Y
  • Sub Title: Framework, Foundation, and Algorithm Design


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Continual and Reinforcement Learning for Edge AI: Framework, Foundation, and Algorithm Design(Synthesis Lectures on Learning, Networks, and Algorithms)
Springer International Publishing AG -
Continual and Reinforcement Learning for Edge AI: Framework, Foundation, and Algorithm Design(Synthesis Lectures on Learning, Networks, and Algorithms)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Continual and Reinforcement Learning for Edge AI: Framework, Foundation, and Algorithm Design(Synthesis Lectures on Learning, Networks, and Algorithms)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!